現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:猴山岳崩塌地的光達掃描與剖面演進分析 [以論文名稱查詢館藏系統]
論文英文名稱:LiDAR Scan and Landform Evolution Analysis of Houshanyue Landslides [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:101
出版年度:102
中文姓名:許智凱
英文姓名:Chih-Kai Hsu
研究生學號:100428067
學位類別:碩士
語文別:中文
口試日期:2013-07-14
論文頁數:110
指導教授中文名:陳偉堯
口試委員中文名:陳水龍;蔡富安
中文關鍵詞:邊坡滑動地面雷射掃描儀GISSTABL點雲
英文關鍵詞:Laser ScannerGISSTABLSlope
論文中文摘要:近年全球氣候異常,極端氣候影響台灣成為高頻率複合型災害地區,短期大量降雨造成邊坡災害頻傳。本研究於台北市文山區猴山岳步道附近之崩塌區域進行長期監測,此崩塌區域由2008年9月辛樂克颱風造成,崩塌後植生逐漸復育,直到2012年暑假期間連續大量降雨造成崩塌區域內一處新的崩塌點,本研究針對此崩塌點進行記錄與分析。
研究中收集中央氣象局歷史颱風資料和台北市大地工程處坡地災害歷史資料,配合雨量指標分析程式以推估正確的崩塌時間。計算結果顯示此處崩塌可能的時間為2012年8月蘇拉颱風帶來驚人雨量所造成。
地面雷射掃描儀高精度及高密度的掃描能力,將崩塌區域的空間資訊掃描紀錄,掃描資料以三維點雲模型呈現,並建立崩塌前後數值地形模型分析。本研究以數值地形模型為主,將分析分為模型套疊、STABL安全係數分析和地理資訊系統等分析地貌的變化。在數值地形模型方面,模型套疊計算崩塌土方量,結合UAV航照影像套疊比較精度;在剖面分析部份, STABL安全係數計算得到崩塌過後的邊坡較為穩定;在地理資訊系統方面,製作地形主題圖,計算崩塌前後平均坡度的變化,並以集水區地形指標之面積高度積分值,判斷崩塌區域地形的發展階段。以上分析成功將地貌的變化以圖表及數值方式加以呈現。
論文英文摘要:World climate anomalies in recent years have led to extreme weather, which has in turn transformed Taiwan into an area prone to high frequency complex disasters frequented by heavy rainfall in a short period of time and the consequent slope disasters. This study involved long-term monitoring of a landslide area near the Houshanyue Trail in Wenshan District, Taipei City. The landslide was caused by Typhoon Sinlaku in September, 2008. Afterwards, vegetation was gradually restored until continuing heavy rainfall leading to a new landslide in the same area during the summer vacation in 2012. This study also recorded and analyzed the landslide.
For the purpose of this study, data was collected from the typhoon database of Central Weather Bureau and the hillside disaster database of Geotechnical Engineering Office, Public Works Department, Taipei City. Based on the data, the precise time of the new landslide was estimated using a program for precipitation index analysis. The results of this calculation showed that the landslide probably occurred as a result of the staggering rainfall brought by Typhoon Saola in August, 2012.
With the high precision and high density scanning capability of the terrestrial laser scanner, the spatial information of the landslide area was scanned and recorded. The scanned data was presented using the three-dimensional point cloud model. Analysis was also established to examine the digital terrain models before and after the landslide. This study was mainly based on these digital terrain models and the analysis consist of model overlay, STABL for factor of safety analysis, and a GIS analysis for the examination of topographic changes. With regard to the digital terrain models, landslide size was calculated using model overlay and compared with the result from UAV aerial image overlay for precision. With regard to profile analysis, factor of safety calculation by STABL indicated that the slope was more stable after the landslide. With regard to the GIS analysis, changes in average gradient before and after the landslide were calculated by generating topographic thematic maps. The stages of terrain development of the landslide area were determined based on the height and area integration values among the geomorphologic indices of the catchment area. The above analysis successfully presented topographic changes graphically and numerically.
論文目次:中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1研究動機與目的 1
1.2研究流程與架構 2
第二章 文獻回顧 4
2.1地面雷射掃描儀相關研究 4
2.2文獻回顧統整 13
第三章 猴山岳崩塌時間推估 14
3.1研究區域概述 14
3.2研究區域崩塌時間分析 15
3.2.1猴山岳地區歷史災害紀錄 15
3.2.2猴山岳地區雨量分析 18
3.3崩塌時間推估結論 21
第四章 應用LiDAR分析猴山岳崩塌地貌 23
4.1儀器與軟體介紹 23
4.2研究區域概況 26
4.3掃描資料紀錄與處理 28
4.4建立研究區域模型分析 33
4.4.1建模步驟與方法 33
4.4.2數值地形模型比較與結果 39
4.5航空影像與LIDAR分析比較 41
4.5.1無人飛行載具介紹 41
4.5.2無人飛行載具模型建置 42
4.5.3 LIDAR與UAV模型剖面比較 46
4.6 LiDAR掃描結論 56
第五章 邊坡穩定的分析 57
5.1極限平衡法介紹 57
5.2 STABL程式介紹 59
5.3極限平衡法分析猴山岳崩塌地 60
5.3.1分析方法與步驟 60
5.3.2 STABL程式之邊坡穩定分析結果 63
5.4 STABL分析結論 74
第六章 基於地理資訊系統分析地貌變化 75
6.1地理資訊系統介紹 75
6.2 猴山岳地區崩塌前後分析方法與結果 76
6.2.1 GIS分析步驟與方法 76
6.2.2 GIS主題圖分析 78
6.3 平均坡度計算 86
6.4以面積高度積分分析地形變化 97
6.5 地理資訊系統分析結論 102
第七章 結論與建議 104
7.1結論 104
7.2建議 105
參考文獻 107
論文參考文獻:1. Abellan, A., Vilaplana, J.M., and Martinez, J. (2006). “Application of a Long-Range Terrestrial Laser Scanner to a Detailed Rockfall Study at Vall De Nuria (Eastern Pyrenees, Spain),” Engineering Geology, Vol. 88, pp. 136-148.
2. Bian, H., Chen, S.E., Watson, C., and Hauser, E. (2011). “Bridge Deck Joints Evaluation using LiDAR and Aerial Photography,” Proc. of SPIE, Vol. 7983, 79831L-1.
3. Bitelli, G., Dubbini, M. and Zanutta, A. (2004). “Terrestril Laser Scanning and Digital Photogrammetry Techiques to Monitor Landslide Bodies,” In Proceedings of the XXth ISPRS Congress, Istambul: 6.
4. Chen, H.-C., Chen, W. W., and Chang, C.-H. (2011). "Novel in-situ Method for Fast Determination of Bridge Pier Displacements during Push-over Tests," Proceedings of SPIE, The International Society for Optical Engineering, 8286, art. no. 828623.
5. Cheng, X.J., Zhang, H.F. and Xie, R. (2010). “Study on 3D Laser Scanning Modeling Method for Large-Scale History Building,” 2010 International Conference on Computer Application and System Modeling, Vol. 7, pp. 573-577.
6. Gaulton, R. and Malthus, T.J. (2010). “Lidar Mapping of Canopy Gaps In Continuous Cover Forests: A Comparison of Canopy Height Model And Point Cloud Based Techniques,” International Journal of Remote Sensing, Vol. 31, No. 5, pp. 1193-1211.


7. Kerr, T., Owens, I., Rack, W., and Gardner, R. (2009). “Using Ground-Based Laser Scanning to Monitor Surface Change on the Rolleston Glacier, New Zealand,” Journal of Hydrology, Vol. 48, pp. 59-72.
8. Kerry, T.S. and Dianne, K.S. (2013). “Modeling Earth Surfaces for Highway Earthwork Computation Using Terrestrial Laser Scanning,” International Journal of Construction Education and Research, Vol. 9, pp. 132-146.
9. Lee W. Abramson、Thomas S. Lee、Sunil Sharma、Glenn M. Boyce, 2002, Slope Stability and Stabilization Methods, Wiley, New York.
10. Lima, S., Cindy A.T., Brock, J.C., Kimbrowd, D.R., Danielsone, J.J. and Reynoldsf, B.J. (2013). “Accuracy Assessment of A Mobile Terrestrial Lidar Survey at Padre Island National Seashore,” International Journal of Remote Sensing, Vol. 34, No. 18, pp. 6355-6366.
11. Malcolm, W., Lan, A., and Graham, H. (2011). “Geomorphological Assessment of Complex Landslide Systems Using Field Reconnaissance and Terrestrial Laser Scanning,” Developments in Earth Surface Processes, Vol. 15, pp. 459-474.
12. Mark, A. F., Dietrich, J. T., Courville, B. C., Jensen, J. L. and Carbonneau, P.E. (2012), “Topographic Structure from Motion: a New Development in Photogrammetric Measurement,” Earth Surf. Process. Landforms, Vol. 38, pp. 421–430.,
13. Renaudin, E., Habib, A. and Kersting, A. P. (2011). “Featured-Based Registration of Terrestrial Laser Scans with Minimum Overlap Using Photogrammetric Data,” ETRI Journal, Vol. 33, No. 4, pp. 517-527.
14. Strahler, A. N. (1952). “Hypsometric (Area-Altitude) Analysis of Erosional Topography,” Bulletin of The Geological Society of America, Vol. 63, pp. 1117-1142.

15. Sui, L., Li, J., Wang, X., and Zhao, D. (2009). “Monitoring Landslides Dynamics using Multitemporal Terrestrial Laser Scanning Data,” Proceedings of SPIE, The International Society for Optical Engineering, Vol. 7471, pp. 574-591.
16. Syahmi, M. Z., Aziz, W. A. W., Zulkarnaini, M. A., Anuar, A., and Othman, Z. (2011). “The Movement Detection on the Landslide Surface by Using Terrestrial Laser Scanning,” Control and System Graduate Research Colloquium (ICSGRC), pp. 175-180.
17. Whitworth, M., Anderson, I. and Hunter, G. (2011). “Geomorphological Assessment of Complex Landslide Systems Using Field Reconnaissance and Terrestrial Laser Scanning,” Developments in Earth Surface Processes, Vol. 15, pp. 459-474.
18. 中央氣象局防災颱風資料庫,http://rdc28.cwb.gov.tw/data.php
19. 沈哲平 (2008),台北市山坡地災損潛勢分析與歷史災害驗證,碩士論文,國立臺北科技大學土木與防災所。
20. 吳宗江、馮正一、陳文福(2007)「崩塌地地形量測精度對土方估算影響之研究」,水土保持學報,第39卷,第一期,第63-72頁。
21. 林美聆、陳天健、林鴻州、游文輝(2003),臺北市崩塌警戒模式訂定方法之研究,中華水土保持學報,第34卷,第四期,第389-399頁。
22. 張政亮(2005),地理資訊系統應用於坡地敏感區之調查與分析-以高屏溪和大甲溪上游為例,第三屆土地研究「國土規劃與永續經營」學術研討會。
23. 許智凱,林毅立,陳泓錡,陳偉堯,王維周( 2012 )「應用雷射掃描技術保存景美人權文化園區的文化遺產」,土木水利,第39卷,第6期,第1-7頁。
24. 連崇吾 (2012),猴山岳崩塌地的警戒雨量與土壤沖蝕量分析,碩士論文,國立臺北科技大學土木與防災所。
25. 陳泓錡 (2012),猴山岳步道崩塌地的地形地貌紀錄與分析,碩士論文,國立臺北科技大學土木與防災所。
26. 陳彥傑 (2004),台灣山脈的構造地形指標特性-以面積高度積分、地形碎形參數與河流波降指標為依據,國立成功大學地球科學研究所博士論文。
27. 陳彥璋,陳偉堯譯(2005),坡地生態工法,坡地植生工程理論與實務,明文書局,p38。原著:Gray, D. H. and Sotir, R. B. (1996). Biotechnical and Soil Bioengineering Slope Stabilization, A Practical Guide for Erosion Control, Wiley, 378 pages.
28. 陳樹群、馮智偉、賴益成( 2010 )「地形特徵對測高曲線形狀的影響」,水土保持學報,第42卷,第一期,第49-64頁。
29. 馮正一和陳世旻( 2011 )「萬大溪河岸邊坡崩塌與河道變遷之案例分析」,水土保持學報,第43卷,第一期,第83-96頁。
30. 楊維和 ( 2008),辛克樂文山區猴山岳步道0k+200處邊坡崩塌搶修工程地質鑽探報告,宗基工程顧問公司,共60頁。
31. 廖世傑(2005),條件機率山崩預測模式,台灣大學土木工程學研究所碩士論文。
32. 臺北市政府大地工程處山坡地資訊系統,http://tcgemis.taipei.gov.tw
33. 趙騫和張錦( 2010 )「TLS在應急測繪滑坡幾何特徵快速提取中的應用研究」,中國太原理工大學測繪科學與技術系碩士論文。
34. 蕭國鑫,劉進金,曾義星和王晉倫( 2010 ) 「三維雷射掃描應用於崩塌土石量化之研究」,航測及遙測學刊,第十五卷,第一期,第97-109頁。
35. Riegl Laser Measurement System (2013). http://www.riegl.com
36. Microdrones (2013). http://www.microdrones.com
論文全文使用權限:同意授權於2014-08-08起公開