現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:地下隧道受地震作用之結構與土壤互制行為研析 [以論文名稱查詢館藏系統]
論文英文名稱:Study on Structure-Soil Interaction of Underground Tunnel Subjected to Seismic Excitation [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:101
出版年度:102
中文姓名:陳竑瑋
英文姓名:Hung-Wei Chen
研究生學號:100428086
學位類別:碩士
語文別:中文
口試日期:2013-07-18
論文頁數:151
指導教授中文名:宋裕祺
口試委員中文名:何泰源;陳立憲
中文關鍵詞:側推分析動力歷時分析塑性鉸OpenSEES
英文關鍵詞:Pushoner AnalysisTime History AnalysisPlastic HingesOpenSEES
論文中文摘要:近年來,由於人口日益增加,促使都會區過度開發而導致用地日漸不足,鐵路及捷運等運輸系統逐漸的採用地下化方式興建,其優點主要為都會敷地不會由於鐵道分割造成支離破碎之情形,可活化都會土地的使用,此外,平交道設施亦可因而免除,避免有故障而傳交通事故,因此地下隧道結構儼然為高度開發都會區所不可或缺的公共設施。
台灣位屬環太平洋地震帶,地震發生頻繁,有關地下隧道結構之耐震行為之探討實屬重要。在相關設計規範中明確揭櫫其行為必須考慮土壤與結構之互制效應,然因其互制行為複雜,工程師對地下隧道受地震作用之模擬分析,大多採用強制變位法,其結果可能會趨於過度保守。因此,本研究將提出二種分析方法解決此一問題:(1) 將地盤變位透過等值土壤彈簧傳達至結構體上,繼而進行側推分析,並與規範規定值進行比較與驗證;(2) 建置有限元素模型進行動力歷時分析,最後再探討此二種分析方式之差異性,本文所得結果可供為地下隧道結構耐震分析之用。
論文英文摘要:This thesis intends to study seismic behavior of underground tunnel. Time history analysis of the finite element model considering soil, underground tunnel structure via software of OpenSEES was conducted to observe the situation of amplification of seismic wave from rock to ground surface as well as structural response of tunnel. The complicated soil-structure interaction was taken into account in this study and the seismic behavior of ground tunnel was able to be obtained and discussed.
In addition, the pushover analysis that is familiar to engineers having a better understanding of structural nonlinearity was introduced to deal with this issue. A simplification model was proposed and analytical results obtained were compared with those of time history analysis. The result shows the proposed pushover analysis gives engineers not only a straightforward insight of seismic behavior for underground tunnel but also a rapid and precious analysis. The result obtained form this thesis can benefit engineers in seismic design of practical engineering.
論文目次:摘 要 i
英文摘要 ii
致 謝 iii
目 錄 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的與重點 1
1.3 研究內容 2
第二章 文獻回顧 5
2.1 前言 5
2.2地下隧道分析 5
2.3日本鐵道構造物設計標準 9
2.3.1反應變位法 9
2.3.2簡單反應變位法 11
2.3.3動力分析法 14
2.4 OpenSEES數值模擬 15
2.5 等值土壤彈簧 17
2.5.1 日本道路橋示方書 17
2.5.2 寺井、高橋經驗公式 18
2.5.3 福岡、宇都經驗公式 19
2.5.4 其它常用經驗公式 19
2.6 小結 20
第三章 地下隧道結構之側推分析 23
3.1 前言 23
3.2 鋼筋混凝土之非線性行為分析 23
3.2.1 撓曲行為 23
3.2.2 剪力行為 24
3.2.3塑性鉸之設定 26
3.2.4 破壞模式之判別 29
3.3 強制變位法 31
3.3.1 強制變位法基本原理 31
3.3.2 工址地盤分類 32
3.3.3 工址地表最大水平地表加速度 33
3.3.4 設計之變形效應 34
3.3.5 載重組合 38
3.3.6考量土壤-結構互制效應之耐震設計基本原則 39
3.4 等值土壤彈簧 43
3.5 小結 43
第四章 有限元素非線性動力歷時分析 45
4.1 前言 45
4.2 有限元素基本理論 45
4.2.1 FEM分析方法 45
4.2.2 FEM之基本原理 46
4.3 OpenSEES簡介 48
4.3.1 系統程式架構 49
4.3.2 OpenSEES分析參數 51
4.4材料組成律 54
4.4.1 混凝土組成律 55
4.4.2 鋼筋組成律 57
4.4.3 土壤組成律 59
4.5 動力歷時分析 60
4.5.1 Newmark-β積分法 60
4.5.2 雷利阻尼 (Rayleigh Damping) 62
4.6 小結 63
第五章 案例分析與探討 65
5.1 前言 65
5.2 分析案例介紹 65
5.3 有限元素之非線性動力歷時分析 67
5.3.1 數值模型建置 67
5.3.2 材料組成律 69
5.3.3 有限元素選擇 72
5.3.4 邊界條件設定 76
5.3.5 歷時分析設定 77
5.3.6 動力歷時分析結果與討論 78
5.4 PushOver Analysis 125
5.4.1模型建置 125
5.4.2 計算強制變位 126
5.4.3 側推分析方法 127
5.4.4 分析結果與討論 128
5.5 非線性動力歷時分析與側推分析之比較與探討 138
5.6 小結 140
第六章 結論與建議 143
6.1 結論 143
6.2 建議 144
參考文獻 147
論文參考文獻:1. Shamsaadi, H. Sedarat, A. Kozak, “Seismic Soil-Tunnel-Structure Interaction Analysis and Retrofit of The Posey-Webster Street Tunnels”,2001.
2. Biot M. A., “General Theory of Three - Dimensional Consolidation”, Journal of Applied Physics, Vol.12, No.2, pp.155-164, 1941
3. Chopra A. K., “Dynamics of Structures,” Prentice Hall Englewood Cliffs, NJ., 1995.
4. Cook R. D., Malkus D. S., Plesha M. E., “Concepts and Applications of Finite Element Analysis,” Third edtion, John Wiley & Sons., 1989.
5. Funahara H., “Components of Dynamic Subgrade Reaction on Pile in Saturated Sand,” 2008.
6. Funahara H., Fujii S. and Tamura S., “Numerical Simulation of Pile Failure in Liquefied Soil Observed in Large-Scale Shaking Table Test,” Proc., of 12th World Conf. on Earthq. Engrg., Reference, Vol.927, 2000, pp.1.
7. Higuchi K., Yasuda K., Tanaka T., Arai D. and Kobayashi T., “Shaking Table Tests on the Mechanism of Liquefaction-Induced Ground Flow Behind Quay Walls,” Soil Dynamics and Earthquake Engineering 25, Vol.25, 2004, pp.753-762.
8. Jeremic B., “A Brief Overview of NEESgrid Simulation Platonform OpenSEES: Application to the Soil–Foundation–Structure Interaction Problems,” Proceedings of the Third United States–Japan Natural Resources Workshop on Soil-Structure Interaction, Vallombrosa Center, Menlo Park, California, USA, 2004.
9. Jeremić B., Jie G., Preisig M. and Tafazzoli N., “Time Domain Simulation of Soil–Foundation–Structure Interaction in Non - uniform Soils,” Earthquake Engineering & Structural Dynamics, Vol.38, No.5, 2009, pp.699-718.
10. Liu Jingbo, Liu Xiangqing, “Pushover AnalysiS of Daikai Subway Station during The Osaka-Kobe Earthquake in 1995,”, Beijing,China,2008.
11. Kincho H., “Computational Modeling of Nonlinear Soil-Structure Interaction on Parallel Computers,” 2004.
12. Kramer S. L., “Geotechnical Earthquake Engineering,” Prentice-Hall Civil Engineering and Engineering Mechanics Series, 1996.
13. Maula B. H., XianZhang, L., Liang, T. and Pengju X., “3D FEM Numerical Simulation of Seismic Pile-Supported Bridge Structure Reaction in Liquefying Ground,” Research Journal of Applied Sciences, 2011.
14. Mazzoni S., McKenna F., Scott M. H. and Fenves G. L., “OpenSees Command Language Manual,” Pacific Earthquake Engineering Research (PEER) Center, 2005.
15. McGann C. R., Arduino P., and Mackenzie-Helnwein P., “Applicability of Conventional p-y Relations to the Analysis of Piles in Laterally Spreading Soil,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.137, No.6, 2010, pp.557-567.
16. Mroz Z., “On the Description of Anisotropic Workhardening,” Journal of the Mechanics and Physics of Solids, Vol.15, No.3, 1967, pp.163-175.
17. Mazzoni S., F. McKenna, M. H. Scott, Gregory L.Fenves, “OpenSEES Command Language Manual,” 2007.
18. Parra-Colmenares E. J., “Numerical Modeling of Liquefaction and Lateral Ground Deformation Including Cyclic Mobility and Dilation Response in Soil Systems,” 1996.
19. Prevost, J. H., “A simple plasticity theory for frictional cohesionless soils,” International Journal of Soil Dynamics and Earthquake Engineering, Vol.4, No.1, pp.9-17, 1985.
20. Reddy J. N., “An Introduction to The Finite Element Method,” McGraw-Hill, 1993.
21. Schnabel P. B., Lysmer J., Seed H. B., “SHAKE: A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites,” No. EERC 72-12)Earthquake Engineering Research Center, University of California at Berkeley, 1972.
22. Tokimatsu K. and Suzuki H., “Pore Water Pressure Response around Pile and Its Effects on p-y Behavior during Soil Liquefaction,” Soils and Foundations, Vol.44, No.6, 2004, pp.101-110.
23. Wang S. C., Ueng T. S., Liu K. Y., Chang C. H. and Chen C. H., “Shaking Table Tests for Scouring Effect on Piled Bridge Foundations,” 4th Japan-Taiwan Joint Workshop on Geotechnical Hazards from Large Earthquakes Engineering and Heavy Rainfalls, Sendai,Japen, October, 2010, 25-28.
24. Wotherspoon L., “Three Dimensional Pile Finite Element Modelling Using OpenSEES,” Dept. of Civil and Environmental Engineering, 2006.
25. Yang Z., Elgamal A. and Parra E., “Computational Model for Cyclic Mobility and Associated Shear Deformation,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.129, No.12, 2003, pp.1119-1127.
26. Yang Z. and Elgamal A. W. M., “Numerical Modeling of Earthquake Site Response Including Dilation and Liquefaction,” 2000.
27. Yang Z. and Jeremić B., “Study of Soil Layering Effects on Lateral Loading Behavior of Piles,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.6, 2005, pp.762-770.
28. Yao S., Kobayashi K., Yoshida N. and Matsuo H., “Interactive Behavior of Soil–Pile-Superstructure System in Transient State to Liquefaction by Means of Large Shake Table Tests,” Soil Dynamics and Earthquake Engineering, Vol.24, No.5, 2004, pp.397-409.
29. Zadeh M. S., Saiidi M. S., “Pre-Test Analytical Studies of NEESR-SG 4-Span Bridge Model Using OpenSEES,” No.CCEER-07-3, Reno, Nevada:University of Nevada, Reno, February, 2007
30. Zienkiewicz O. C., Taylor R. L., “The Finite Element Method - Volume 1:Basic Formulation and Linear Problems,” Fourth Edition, UK: McGraw-Hill, 1991.
31. Zienkiewicz O. C., Taylor R. L., “The Finite Element Method - Volume 2:Solid and Fluid Mechanics, Dynamics and Non-Linearity,” Fourth Edition, UK: McGraw-Hill, 1991
32. 国土交通省铁道局,鉄道総合技術研究所,鉄道構造物等設計標準・同解説 土留め構造物,平成24年9月。
33. 日本道路協會,道路橋示方書(I共通編IV下部構造編)‧同解說,1996。
34. 交通部,鐵路橋梁耐震設計規範,2008。
35. 交通部,鐵路隧道及地下化工程設計規範-明挖覆蓋篇(草案),2012。
36. 內政部,鋼筋混凝土建築物耐震能力評估手冊,2012。
37. 內政部,混凝土結構設計規範,2011。
38. 宋裕祺、林正偉、王傅輝,有限元素法在鋼橋局部應力分析之應用與探討,中華技術,第71期,2006,第62-73頁。
39. 廖南華,土壤經驗參數於數值分析之應用,國立成功大學土木工程研究所碩士論文,台南,2003。
40. 張國鎮、蔡益超、宋裕祺等人,「公路橋梁耐震能力評估及補強準則之研究」,2009,國家地震工程研究中心報告,報告編號:NCREE-09-028。
41. 李政達,鋼筋混凝土非線性結構動力分析之數值雜訊探討,國立臺北科技大學土木與防災研究所碩士論文),台北,2011。
42. 蔡雨呈,砂箱實驗模擬樁基礎裸露動力行為分析與探討,國立臺北科技大學土木與防災研究所碩士論文,台北,2011。
43. 劉晶波、劉祥慶、李彬,地下結構抗震分析與設計的Pushover分析方法,清華大學,北京,2008。
44. 高劍飛,OpenSEES一個專用於土木工程的分析軟件,四川水利,2007。
45. 施軍建、梁清雨、馬來富,基於OpenSEES計算平台的場地震反應分析,廣東省地質工程中心,2009。
46. 黃俊鴻、盧志杰、呂昱達,以修正強制變形法分析隧道耐震能力之探討,中央大學土木工程系,中壢,2010。
47. 翁作新、王明輝、陳銘鴻、何文欽,「大型振動台剪力盒土壤液化試驗 (I)-大型二維剪力盒之研發」,國家地震工程研究中心報告,2001,報告編號:NCREE-01-011。
48. 董學宜,砂箱實驗模擬基樁位於乾砂與飽和砂動力行為分析與探討,國立台北科技大學土木與防災所碩士論文,台北,2012。
論文全文使用權限:不同意授權