現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:GFRP框架採金屬接頭側推實驗與數值分析之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Study on Pushover Test and Numerical Analysis of GFRP Frame with Metal Joints [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:101
出版年度:102
中文姓名:賴建宇
英文姓名:Jian-Yu Lai
研究生學號:100428004
學位類別:碩士
語文別:中文
口試日期:2013-07-27
論文頁數:108
指導教授中文名:李有豐
指導教授英文名:Yeou-Fong Li
口試委員中文名:陳清泉;徐增興;邱佑宗
口試委員英文名:Ching-Chuan Chern;Tseng-Hsing Hsu;Yu-Tsung Chiu
中文關鍵詞:FRP(Fiber Reinforced Plastic)GFRP框架側推實驗
英文關鍵詞:FRPGFRP FramePushover Test
論文中文摘要:本論文利用拉擠成型之GFRP構件與金屬製接頭進行組裝,再以螺栓進行鎖固,製作成框架試體,試體分成單跨及雙跨總共6組。單跨試體包括原型框架、框架加裝受拉斜撐及框架加裝受壓斜撐;雙跨試體包括原型框架、框架加裝受拉-壓斜撐及框架加裝受壓-拉斜撐,最後將試體進行單向側力施加之試驗,並以SAP2000數值模擬軟體進行分析,再與試驗結果進行驗證比較。
實驗結果發現加裝受拉斜撐之試體,在極限強度、初始勁度以及能量消散之效果皆較原型框架與受壓斜撐框架好;而加裝受壓斜撐之試體破壞模式皆是受壓斜撐先產生挫曲破壞,此時梁、柱構件並未發生損傷,顯示受壓斜撐之次要構件可以做替換補強外,還能為結構提供預警之效果。
另外SAP2000數值模擬軟體之應用,由於實驗之破壞模式,是從接頭螺栓開孔處開裂導致力量下降,此現象使彎矩無法傳遞。因此在軟體設定,是將框架以塑性鉸方式進行設定;而斜撐構件在塑性鉸設定上使用「等值柱概念」進行參數設定,分析結果與實驗比較之誤差皆為4 %以內,顯示分析與實驗吻合,證明使用SAP2000分析軟體除了可以使工程師使用容易上手外,分析結果也有一定精準度。
論文英文摘要:In this thesis, a GFRP frame is made by assembling GFRP components and metal joints and fastening them with bolts. A total of six specimens were used, and these were divided into single-span and double-span frames. Single-span specimens include a prototype specimen, a tension-braced specimen and a compression-braced specimen. The double-span specimens on the other hand include a prototype specimen, a tension-compression-braced specimen and a compression-tension -braced specimen. Finally the specimens were analyzed in the Pushover test and numerical simulation was done using SAP2000 before comparing the experimental results with the analytical ones.
Experimental results show that the tension-braced specimen has the highest ultimate strength, initial stiffness and the most effective energy dissipation. The compression-braced specimen failed by the buckling of the brace while the rest of frame had no visible failure. This indicates that the secondary member, the compression brace member, which is also replaceable, can provide early warning for the structure.
In the experiment, the force dropped subsequently after the bolt hole cracked because the moment could not be transmitted. For SAP2000, this phenomenon cannot be replicated until a plastic hinge is used. The bracing members of this study use an “equivalent column” plastic hinge concept. Analysis results when compared with the experimental results have an absolute error rate less than 4 %, showing correlation. This proves the use of SAP2000 in making engineers` works easier as the analysis software has a high accuracy.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的及內容 3
第二章 文獻回顧 5
2.1 FRP構件相關研究 5
2.2 FRP構件接合相關研究 7
2.3 FRP框架與接頭相關研究 12
第三章 材料介紹與實驗規劃 17
3.1 FRP複合材料介紹 17
3.2 實驗材料、設備與方法介紹 21
3.2.1 實驗材料 21
3.2.2 實驗設備 22
3.2.3 實驗方法 24
3.2.4 單柱實驗 27
3.3 GFRP框架試體編號與介紹 31
3.4 單跨GFRP框架試體製作 34
3.4.1 單跨無斜撐(FP1)試體之製作 34
3.4.2 單跨抗拉斜撐(FP1T)試體之製作 35
3.4.3 單跨抗壓斜撐(FP1C)試體之製作 37
3.5 雙跨GFRP框架試體製作 38
3.5.1 雙跨無斜撐(FP2)試體之製作 38
3.5.2 雙跨抗拉-抗壓斜撐(FP2TC)試體之製作 39
3.5.3 雙跨抗壓-抗拉斜撐(FP2CT)試體之製作 41
第四章 實驗觀察與結果比較 43
4.1 單跨試體之實驗結果與比較 43
4.1.1 單跨無斜撐(FP1)試體之實驗結果 43
4.1.2 單跨抗拉斜撐(FP1T)試體之實驗結果 47
4.1.3 單跨抗壓斜撐(FP1C)試體之實驗結果 51
4.1.4 單跨三組試體實驗結果之比較 56
4.1.5 減少螺栓開孔數量之單柱實驗 59
4.2 雙跨試體之實驗結果與比較 65
4.2.1 雙跨無斜撐(FP2)試體之實驗結果 65
4.2.2 雙跨抗拉-抗壓斜撐(FP2TC)試體之實驗結果 72
4.2.3 雙跨抗壓-抗拉斜撐(FP2CT)試體之實驗結果 79
4.2.4 雙跨三組試體實驗結果之比較 85
第五章 非線性側推分析 89
5.1 SAP2000數值分析軟體之參數與設定 89
5.2 塑性鉸使用Hinge Overwrites設定 94
5.3 框架實驗結果和分析結果比較 97
第六章 結論與建議 103
6.1結論 103
6.2建議 105
參考文獻 106
論文參考文獻:1. Ascione, F., Feo, L. and Maceri, F., “On the Pin-Bearing Failure Load of GFRP Bolted Laminates: An Experimental Analysis on the Influence of Bolt Diameter,” Composites Part B: Engineering, Vol. 41, No. 6, pp. 482-490 (2010).
2. Al-Kharat, M. and Rogers, C. A., “Inelastic Performance of Cold-Formed Steel Strap Braced Walls,” Journal of Constructional Steel Research, Vol. 63, No. 4, pp. 460-474 (2007).
3. Bao, W., Shao, Y. S. and Xing, L. T., “Measuring Method of Rotation Used in Research on Steel Frame Semi-Rigid Beam-to-Column Connection,” Advanced Materials Research, Vol. 243, pp. 1439-1442 (2011).
4. Clarke, J. L., Structural Design of Polymer Composites : EUROCOMP Design Code and Handbook, St Edmundsbury Press, UK (1996).
5. Citipitioglu, A. M., Haj-Ali, R. M. and White, D. W., “Refined 3D Finite Element Modeling of Partially-Restrained Connections Including Slip,” Journal of Constructional Steel Research, Vol. 58, No. 5, pp. 995-1013 (2002).
6. Davalos, J. F., Salim, H. A., Qiao, P. and Lopez-Anido, R., “Analysis and Design of Pultruded FRP Shapes under Bending,” Composites Part B: Engineering, Vol. 27, No. 3, pp. 295-305 (1996).
7. Diaz-Gomez, C., Optimum Design of Semi-Rigid Joint by Numerical Simulation and Kriging Models, Ph.D. Thesis, Technical University of Cartagena, Spain (2010).
8. Hejll, A., Taljsten, B. and Motavalli, M., “Large Scale Hybrid FRP Composite Girders for Use in Bridge Structures-Theory, Test and Field Application,” Composites Part B: Engineering, Vol. 36, No. 8, pp. 573-585 (2005).
9. Hai, N. D., Mutsuyoshi, H., Asamoto, S. and Matsui, T., “Structural Behavior of Hybrid FRP Composite I-Beam,” Construction and Building Materials, Vol. 24, No. 6, pp. 956-969 (2010).
10. Karakuzu, R., Demirgoren, O., Icten, B. M. and Deniz, M. E., “Failure Behavior of Quasi-Isotropic Laminates with Three-Pin Loaded Holes,” Materials and Design, Vol. 31, No. 6, pp. 3029-3032 (2010).
11. Kapti, S., Sayman, O., Ozen, M. and Benli, S., “Experimental and Numerical Failure Analysis of Carbon/Epoxy Laminated Composite Joints under Different Conditions,” Materials and Design, Vol. 31, No. 10, pp. 4933-4942 (2010).
12. Lehman, D., Roeder, C., Herman, D., Johnson, S. and Kotulka, B., “Improved Seismic Performance of Gusset Plate Connections,” Journal of Structural Engineering, Vol. 134, No. 6, pp. 890-901 (2008).
13. Masarira, A., “The Effect of Joints on the Stability Behaviour of Steel Frame Beams,” Journal of Constructional Steel Research, Vol. 58, No. 10, pp. 1375-1390 (2002).
14. Mahini, S. S. and Ronagh, H. R., “Strength and Ductility of FRP Web-Bonded RC Beams for the Assessment of Retrofitted Beam-Column Joints,” Composite Structures, Vol. 92, No. 6, pp. 1325-1332 (2010).
15. Qiao, P., Davalos, J. F. and Brown, B., “A Systematic Analysis and Design Approach for Single-Span FRP Deck/Stringer Bridges,” Composites Part B: Engineering, Vol. 31, No. 6, pp. 593-609 (2000).
16. Schniepp, T. J., Design Manual Development for a Hybrid, FRP Double-Web Beam and Characterization of Shear Stiffness in FRP Composite Beams, M.S. Thesis, Virginia Polytechnic and State University, USA (2002).
17. Subramanian, C. and Senthilvelan, S., “Effect of Reinforced Fiber Length on the Joint Performance of Thermoplastic Leaf Spring,” Materials and Design, Vol. 31, No. 8, pp. 3733-3741 (2010).
18. Strongwell, “Fiberglass Building Solutions,” www.strongwell.com (2011).
19. Yorgun, C. and Bayramoglu, G., “Cyclic Tests for Welded-Plate Sections with End-Plate Connections,” Journal of Constructional Steel Research, Vol. 57, No. 12, pp. 1309-1320 (2001).
20. 土木學會構造工委員會FRP橋梁研究小委員會,FRP橋梁-技術とその展望,社團法人土木學會,日本(2004)
21. 李有豐、徐增興、余忠政,“FRP構件物理及化學結合剪力強度之研究”,第十一屆結構工程研討會論文集,臺中,臺灣(2012)。
22. 李有豐,FRP複合材料於土木與建築工程之應用,台灣區複合材料工業同業公會,臺北,臺灣(2012)。
23. 李有豐、蔡仁惠、陳偉堯、余忠政、陳明杰、王健安,“纖維強化高分子複合材料(Fiber Reinforced Plastic, FRP)於國家公園人行棧橋之應用”,中國土木水利工程學刊,第40卷,第3期,第53-61頁(2013)。
24. 李有豐,「耐側向力FRP構架」,中華民國專利申請中。(發明)
25. 李森柟,SAP2000結構設計實務,科技圖書股份有限公司出版,臺北,臺灣(2005)。
26. 馬振基,高分子複合材料,正中書局,臺北,臺灣(1995)。
27. 許明發、郭文雄,複合材料,高立圖書有限公司,臺北,臺灣(2004)。
28. 游錫揚,纖維複合材料,國彰出版社,第7-13頁,臺中,臺灣(1997)。
29. 蔡克銓、黃彥智、翁崇興,“含挫曲束制消能支撐構架耐震性能試驗與分析研究”,結構工程,第19卷,第1期,第3-40頁(2004)。
30. http://www.strongwell.com/about/the-pultrusion-process/
論文全文使用權限:不同意授權