現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:應用SUSTAIN模式模擬非點源污染削減能力-以鳶山堰集水區為例 [以論文名稱查詢館藏系統]
論文英文名稱:SUSTAIN Model-based Simulation of NPS Pollution Reduction Capability – A Case Study of Yuanshanyan Watershed [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:101
出版年度:102
中文姓名:施明言
英文姓名:Ming-Yang Sheng
研究生學號:100428071
學位類別:碩士
語文別:中文
口試日期:2013-07-16
論文頁數:87
指導教授中文名:林鎮洋
口試委員中文名:陳起鳳;張嘉玲
中文關鍵詞:非點源污染LIDSUSTAIN
英文關鍵詞:Nonpoint Source Pollution(NPS)LIDSUSTAIN
論文中文摘要:位於桃園縣的鳶山堰供應北桃園地區與新北市部分地區民生飲用水,其河系與供應桃園地區的石門水庫同屬淡水河系大漢溪支流,位於石門水庫下游約19公里,人為開發的情況下造成鳶山堰水質惡化,使得取水口水質達成率近十年來低於50%,為改善其水質,本研究利用LID決策支援系統(SUSTAIN),模擬在集水區中施作LID設施對非點源污染的削減效益。
使用LID決策支援系統(SUSTAIN)前,內部使用之水文水質參數藉由決定係數R2、模式有效性係數NSE及平均誤差百分比MAPE判定指標皆符合接受值,讓模擬成果更具可靠性;利用SUSTAIN模式模擬LID設施施作於研究區域,並選用點、線、面三種不同類型之LID設施作為模式模擬使用,模擬結果指出,點型設施植生滯留槽效果最佳,可削減的非點源污染負荷量總磷7%、總氮11%、懸浮固體8%及生化需氧量17%;本研究利用SI值判別SUSTAIN模式中使用之LID設施參數敏感度,計算結果指出LID設施內部土壤滲透率參數為影響非點源污染削減效益之主要參數。
論文英文摘要:Yuanshanyan is located in Taoyuan County and supplies drinking water for the livelihood of residents in Northern Taoyuan and part of New Taipei City. Like Shimen Reservoir that supplies water for Taoyuan, the river system of Yuanshanyan is part of Tahan River, a tributary in the system of Tamsui River. Situated at a distance of about 19 km from the downstream of Shimen Reservoir, Yuanshanyan Watershed includes the renowned tourist destination, Daxi Old Street, and three urban planning areas, where human activity causes water quality in the watershed to deteriorate, resulting in water quality compliance at intake (DO, BOD, SS, and NH3-N) that has remained below 50% for nearly a decade. For the purpose of improving water quality in the watershed, sources of pollution were divided into point and nonpoint sources of pollution. The former could be controlled through sewage systems while the latter was an occurrence associated with rains. Therefore, this study simulated how the implementation of LID facilities could improve the water quality in the watershed using the LID decision support system, SUSTAIN.
Prior to the use of the LID decision support system, SUSTAIN, the hydrological and water quality parameters for internal use were determined to be in compliance with acceptable values using coefficient of determination R2, Nash-Sutcliffe model efficiency coefficient (NSE), and mean average percentage error (MAPE) to increase the reliability of simulated results. The implementation of LID facilities in the researched area was simulated using the SUSTAIN model. Three different types, i.e. point, line and plane, of LID facilities were chosen for the model-based simulation. Simulation results show that the bioretention cell in the point type facility is most effective and can reduce the total P, total N, SS and BOD in NPS pollution by 7%, 11%, 8% and 17%. Research results not only quantify the effectiveness of water quality improvement by LID, but also provide an assessment tool for decision-makers in watershed management. This study further determined parameter sensitivity of the LID facilities in the SUSTAIN model using the sensitivity index (SI). Calculation results reveal that soil permeability inside the LID facilities is the main parameter that affects the efficacy of NPS pollution reduction.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 x
第一章 前言…………………………………………………………………………..1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法與流程 2
第二章 文獻回顧 4
2.1 低衝擊開發介紹 4
2.2 LID設施評估模式 13
2.2.1 LID設施評估模式介紹 13
2.2.2 LID設施評估模式比較 15
2.3 SUSTAIN模式相關應用 16
第三章 研究方法 19
3.1 研究區域 19
3.2 SUSTAIN模式介紹 26
3.2.1 土地模組 28
3.2.2 LID模組 31
3.2.3 傳輸模組 33
3.2.4 最佳化模組 37
3.2.5 後計算處理 40
3.3 SUSTAIN模擬建置 41
3.3.1 鳶山堰集水區建置 41
3.3.2 LID設施設計情境 45
3.4 SUSTAIN模式參數判定指標 47
3.5 敏感度分析 50
第四章 結果與討論 52
4.1 SUSTAIN模式參數率定驗證 52
4.1.1 SUSTAIN 模式水文參數率定驗證 52
4.1.2 SUSTAIN模式水質參數率定驗證 58
4.2 模擬LID設施之非點源污染削減效益 66
4.3 相同總面積不同數量LID設施非點源污染削減效益 73
4.4  LID設施參數敏感度分析 76
第五章 結論與建議 81
5.1 結論 81
5.2 建議 82
參考文獻 83
論文參考文獻:1. ASCE,(1992)Design & Construction of Urban Stormwater Management Systems,New York, NY.
2. Adams, B. J., and Papa, F.,. Urban stormwater management planning
with analytical probabilistic models. Wiley, New York.,2000
3. Braga A. and C. Connolly,Introduction to Permeable Friction Course (PFC) Asphalt, Low Impact Development 2010: Redefining Water in the City 2010 ASCE.
4. Braune, M. J. and A. Wood (1999), Best management practices applied to urban runoff quantity and quality control. Water Science and Technology 39 (12): p117-121.
5. Bobby Markowitz, BEST PRACTICES FOR MAXIMUM BENEFICIAL USE OF RAINWATER, Low Impact Development 2010: Redefining Water in the City 2010 ASCE.
6. C.F, Chen, J.Y. Lin, C.H. Huang, W.L. Chen and N.L. Chueh, Performance Evaluation of a Full-Scale Natural Treatment System for Nonpoint Source and Point Source Pollution Removal, Environmental Monitoring and Assessment, 2008.
7. C.F, Chen, J.Y. Lin , S. F. Kang, Y. J. Li and C. H. Yang,Prediction of a structural BMP performance in long term operation with BMP ToolBox model, Environmental Engineering Science ,27(1):55~64(SCI),2010
8. Fu-hsiung Lai, Ting Dai, Jenny Zhen, John Riverson, Khalid Alvi, and Leslie Shoemaker SUSTAIN - AN EPA BMP PROCESS AND PLACEMENT TOOL FOR URBAN WATERSHEDS, Water Environment Federation. 952~968.
9. Haifeng Jia, Yuwen Lu , Shaw L. Yu , Yurong Chen , Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village, Separation and Purification Technology 84 (2012) 112–119.
10. Joong Gwang Lee; James P. Heaney, and Fu-hsiung Lai, Optimization of Integrated Urban Wet-Weather Control Strategies, J. Water Resour. Plann. Manage. 2005.131:307-315.
11. James G. Hunter, Bernard A. Engel, Joseph E. Quansah, Web-based Low Impact Development Decision Support Tool for Watershed Planning, Low Impact Development 2010: Redefining Water in the City 2010 ASCE.
12. John Kevern, Maintenance and Repair Options for Pervious Concrete, Low Impact Development 2010: Redefining Water in the City 2010 ASCE.
13. Joong Gwang Lee; James P. Heaney; and Chelisa A. Pack, Frequency Methodology for Evaluating Urban and Highway Storm-Water Quality Control Infiltration BMPs, J. Water Resour. Plann. Manage. 2010.136:237-247.
14. Joong Gwang Lee , Ariamalar Selvakumar , Khalid Alvi , John Riverson , Jenny X. Zhen , Leslie Shoemaker , Fu-hsiung Lai , A watershed-scale design optimization model for stormwater best management practices, Environmental Modelling & Software 37 (2012) 6-18
15. J.Y. Lin, and C.D. Hsieh, ″A Strategy for Implementing BMP for Controlling Nonpoint Source Pollution: the Case of the Fei-tsui Reservoir Watershed in Taiwan″, Journal of the American Water Resources Association, vol. 39, no. 2, 2003, pp. 401-412.
16. McCuen, R. et al., Hydrology, FHWA-SA-96-067,Federal Highway Administration, Washington, DC, 1996
17. Richard A. Wagner, P.E., D.WRE, Calculation of LID Benefits in Meeting New Development Standards, Low Impact Development 2010: Redefining Water in the City 2010 ASCE.
18. Robert A. Brown, Daniel E. Line, William F. Hunt, and William G. Lord, Comparison of Low Impact Development Treatment, Traditional Stormwater Treatment,and No Stormwater Treatment for Commercial Shopping Centers in North Carolina, Low Impact Development 2010: Redefining Water in the City 2010 ASCE.
19. U.S. Army Corps of Engingeers, Unified Facilities Crireria (UFC)-Low Impact Development, 2010.
20. USEPA. The Use of Best Management Practices (BMPs) in Urban Watersheds. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, 2004.
21. USEPA, Green Infrastructure: Case Studies: municipal policies for managing stormwater with green infrastructure, 2010.
22. USEPA,Reducing Stormwater Costs through Low Impact Development (LID) Strategies and Practices,2007
23. USEPA, SUSTAIN - A Framework for Placement of Best Management Practices in Urban Watersheds to Protect Water QualityREPORT, 2009.
24. USEPA. Stormwater Best Management Practice Design Guide. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, 2004.
25. Washington, DC, Low Impact Development Center , Low Impact Development LID A Literature Review, 2000.
26. Prince George.s County, Maryland Department of Environmental Resources Programs and Planning Division, Low Impact Development Hydrologic Analysis,1999.
27. Rossman, L.A. Stormwater Management Model User’s Manual, Version 5.0., U.S. Environmental Protection Agency, Water Supply and Water Resources Division, National Risk Management Research Laboratory, Cincinnati, OH., 2005.
28. 中美日LID經驗交流研討會論文集,中美日LID經驗交流研討會,臺北科技大學,2012。
29. 自來水水質水量保護區環境影響因子調查與資料建置及涵容能力分析研究(1/4),經濟部水利署,2009。
30. 江政育,SWMM─RUNOFF參數優選模式之開發,碩士論文,中原大學土木工程研究所,桃園,2010。
31. 艾奕康工程顧問股份有限公司,鳶山堰集水區蓄水範圍及鄰近集水區水質保護設施規劃計畫,經濟部水利署,2013。
32. 吳肇球、吳學禮、方克立、徐碧秀,「生態工程之透水性鋪面」,鋪面工程,第三卷,第二期,2005。
33. 低衝擊開發技術(LID)國際研討會論文集,低衝擊開發技術(LID)國際研討會,臺北科技大學,2012。
34. 林鎮洋、康世芳、陳彥璋、張均成,「應用MUSIC模擬BMP之除污效率」,中華水土保持學報,第三十八期,第二卷,2007,第105–122頁。
35. 林玉婷,比較HSPF及SWMM模式於北勢溪集水區之研究,碩士論文,臺北科技大學,臺北,2011。
36. 郭振泰,最佳管理作業(BMPs)最佳化配置之研究(2/2)研究成果報告,行政院國家科學委員會,國立臺灣大學土木工程學系暨研究所,2007。
37. 張嘉玲, 低衝擊開發之應用及發展趨勢, 中國土木水利工程學會會刊 , 35/4, PP. 104~110 , 2008-08。
38. 唐穎,SUSTAIN支持下的城市降雨逕流最佳管理BMP規劃研究,碩士論文,北京清華大學工學環境學院,北京市,2010。
39. 陳宜隆,應用SUSTAIN模擬生態校園地表逕流之削減能力-以臺北科技大學為例,碩士論文,臺北科技大學,臺北,2012。
40. 黃民宗、林鎮洋、張嘉玲,自來水水質水量保護區之涵容能力分析, 2009 環境規劃與管理研討會。
41. 國立臺北科技大學水環境研究中心,非點源污染現地處理技術研究計畫,行政院環境保護署,2010。
42. 國立臺北科技大學水環境研究中心,自來水水質水量保護區管理措施探討與研究(1/2),經濟部水利署,2011。
43. 國立臺北科技大學水環境研究中心,自來水水質水量保護區管理措施探討與研究(2/2),經濟部水利署,2012。
論文全文使用權限:同意授權於2018-12-31起公開