現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:不同灌溉制度對地下水補注之影響評估 [以論文名稱查詢館藏系統]
論文英文名稱:Assessing the groundwater recharge under various irrigation schemes [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:101
出版年度:102
中文姓名:林子喬
英文姓名:Zih-Ciao Lin
研究生學號:100428078
學位類別:碩士
語文別:中文
口試日期:2013-07-18
論文頁數:77
指導教授中文名:陳世楷
指導教授英文名:Shih-Kai Chen
口試委員中文名:張誠信;王聖瑋;高雨瑄
中文關鍵詞:水稻強化栽培法三維地下水模式灌溉制度地下水補注入滲率
英文關鍵詞:SRIFEMWATERirrigation schemesgroundwater rechargeinfiltration rate
論文中文摘要:本研究以目前國際間積極推廣之水稻強化栽培法:(The System of Rice Intensification,SRI)所擬定之節水灌溉原則,探討其在台灣施行時,可能造成地下水補注量減少之衝擊。三維地下水模式(FEMWATER)因具備可變邊界條件(Variable boundary condition)模擬功能,可以應用在模擬分析不同灌溉用水制度,湛水深度隨時間改變時,對地下水入滲補注之影響。本研究以彰化田中實驗田之現地資料,包括土壤分層,入滲率及田區土壤水分分佈等資料,驗證建立水田淺層地下水補注模式。根據本土水田環境特性及SRI所需改變之灌溉操作方式,評估氣候條件與農業用水操作等情境改變下,田間湛水深度隨時間改變對應之入滲率變化情形,量化評估其對淺層地下水補注功能,並與我國現行之灌溉方式(續灌及輪灌)進行比較。結果顯示使用續灌湛水深度6cm平均入滲率為最高,達4.57 mm/day;輪灌次之,5天灌溉期距之入滲率為4.42mm/day、7天灌溉期距則為4.38mm/day;SRI法之平均入滲率最低,3及5天灌溉期距分別為4.12mm/day與4.09mm/day。以5天灌溉期距之SRI法為例,其補注量分別較續灌、5天期距之輪灌減少達12%及9%。研究結果可提供相關單位作為研擬整體地下水水資源經營管理調適方案之基礎。
論文英文摘要:The System of Rice Intensification (SRI) was developed as a set of insights and practices used in growing irrigated rice. Based on the water-saving irrigation practice of SRI, impacts of the new methodology on the reducing of groundwater recharge were assessed in Taiwan. The three-dimensional groundwater model (FEMWATER) with the variable boundary conditions analog functions, was applied in simulating groundwater recharge under different irrigation schemes with variable ponded water depth. In-situ measurements including soil layers, infiltration rate, and soil moisture distribution of Ten-Chung experimental field (located in Chung-Hwa county, central Taiwan) were used in model validation. According to local climatic and environmental characteristics associated with SRI methodology, the change of infiltration rate was evaluated compared with the traditional irrigation schemes, including continuous irrigation and rotational irrigation scheme. The results showed that average infiltration rates in growing season for continuous irrigation with 6cm ponded water depth, rotational scheme with 5-day irrigation interval, rotational scheme with 7-day irrigation interval, SRI methodology with 3-day irrigation interval, and SRI methodology with 5-day irrigation interval were 4.57 mm/day, 4.42mm/day, 4.38mm/day, 4.12mm/day, and 4.09mm/day, respectively. The groundwater recharge amount of SRI methodology with 5-day irrigation interval reduced 12% and 9% compared with continuous irrigation and rotational scheme (5-day irrigation interval), respectively. For the reduction of groundwater recharge when applying the SRI methodology in Taiwan, it is suggested that the relevant governmental agency should formulate effective measures for integrated groundwater resource management.
論文目次:中文摘要i
英文摘要ii
誌 謝iv
目 錄v
表 目 錄vii
圖 目 錄viii
第一章 緒論1
1.1研究動機1
1.2研究目的2
1.3 研究方法與流程2
第二章 文獻回顧4
2.1水田入滲補注之研究4
2.2牛踏層之影響 6
2.3水稻強化栽培法之發展6
2.4 FEMWATER模式相關文獻9
第三章 水田灌溉與水收支11
3.1 水稻田灌溉用水調查分析11
3.2 水稻田淺層地下水補注機制分析17
第四章 理論背景與分析工具22
4.1 FEMWATER模式介紹22
4.2 流體控制方程式23
4.3 數值分析方法26
4.4 土壤模式之特性定義28
4.5 初始條件與邊界條件31
4.6 層狀土壤非飽和流動形成之水力條件37
第五章 數值模式建立與分析探討41
5.1 模式建立41
5.2 定水頭邊界對於水田區之入滲影響46
5.3 變動邊界對於水田區之入滲影響48
5.4 綜合討論58
第六章 結論與建議61
6.1 結論61
6.2 建議62
參考文獻63
附錄A.不同灌溉制度之模擬設定值69
論文參考文獻:[1]Adachi K., ”Effects of rice-soil puddling on water percolation.”, In Proceedings of the 14th International Congress of Soil Science”, 1990, Japan, pp.146-151.
[2]Bonkowski M, ” Protozoa and plant growth: the microbial loop in soil revisited.” , New Phytol,Vol.162, 2004, pp.616-631.
[3]Chen S. K. and C. W. Liu, “Analysis of Water Movement in the Paddy Rice Fields (I) ExperimentalStud”, Journal of Hydrology,Vol.260, 2002a,
pp.206-215.
[4]Chen S. K., C. W. Liu and H.C. Hwang, “Analysis of Water Movement in the Paddy Rice Fields, (II) Numerical Simulation”,Journal of Hydrology, Vol.268,2002b, pp.259-271.
[5]Ferguson, J.A., “Effect of flooding depth on rice yield and water balance”, Arkansas Farm Res. 19, 1970, pp.4.
[6]Huggins, L.F. and E.J. Monke, “The Mathematical Simulation of the Hydrology of Small Watersheds.”,Tech. Rept. 1, Purdue University Water Resource Center, Lafayette, Ind, 1966.
[7]IRRI,Annual report 1964, International Rice Research Institute,Los Banos, Philippines,1965, pp335.
[8]Iwata, S., Tabuchi, T. and Warkentin, B.P.,Soil-water interactions. Mechanisms and Applications., Marcel Dekker, Inc., New York,1994﹐pp.362-363.
[9]Jang Cheng-Shin, Liu Chen-Wuing,” Geostatistical analysis and conditional simulation for estimating the spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan.”, Hydrological Processes, Vol.18, pp.1333-1350.
[10]Kampen, J., Water losses and water balance studies in lowland rice irrigation, Ph.D. thesis, Cornell University, USA, 1970, pp.416.
[11]Kim, T.C., U.S. Gim, J.S. Kim, and D.S. Kim,” The multi-functionality of paddy farming in Korea”, Paddy Water Environ 4,2006, pp.169-179.
[12]Lin, H. C., D. R. Richards, G. T. Yeh, J. R. Cheng, H. P. Cheng, N. L. Jones, “FEMWATER: a three-dimensional finite element computer model for simulating density dependent flow and transport”, Technical Report, HL-97.
[13]Liu C.W., H. C Huang, S. K. Chen and Y.M. Kuo,“Subsurface Return Flow and Groundwater Recharge of Terrace Fields in Northern Taiwan”, Journal of the American Water Resources Association, 2004,pp.603-614.
[14]Liu, C. W., S. K. Chen, S.W. Jou and S.F. Kuo, ” Estimation of the Infiltration Rate of a Paddy Field in Yun-Lin, Taiwan.” , Agriculture Systems﹐ Vol.68,2001,pp.41-54.
[15]Matsuno, Y., K. Nakamura, T. Masumoto, H. Matsui, T. Kato and Y. Sato,“Prospects for multifunctionality of paddy rice cultivation in Japan and other countries in monsoon Asia”, Paddy Water Environ. 4,2006,pp.189-197.
[16]Moormann , F.R. and Van Breemen, N., “Rice: soil, water land. ”, International Rice Research Institute, Los Banos, Philippines,1978, pp.185.
[17]Mualem Y.,“A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media”, Water Resources Research, Vol.12,No.3, 1976 , pp.513-522.
[18]OECD,1998,Multifunctionality:a framework for policy analysis[AGR/CA(98)9]
[19]Olaleye AO, Tabi FO, Ogunkunle AO, Sahrawat KL,”Effect of toxic iron concentrations on the growth of lowland rice”,J Plant Nutr,Vol.24,2001, pp.441-457.
[20]Prihar, S.S., Ghildyal, B.P., Painuli, D.K. and Sur, H.S., “Physical properties of mineral soils affecting rice-based cropping systems.” in:Soil Physics and Rice. International Rice Research Institute, Los Banos, Philippines, 1985, pp57-70.
[21]Rupela OP, Wani SP, Kranthi M, Humayun P, Satyanarayana A, Goud V, Gujja B, Punnarao P, Shashibhushan V, Raju DJ, Reddy PL., Comparing soil properties of farmers’ fields growing rice by SRI and conventional methods. In: 1st National SRI Symposium, Worldwide Fund for Nature-ICRISAT, Patancheru, Hyderabad,2006,pp.17-18.
[22]Sanchez, P.A., “Puddling tropical rice soils. 2. Effects of water losses”, Soil Sci., Vol.115, no. 4, 1973, pp. 303-308.
[23]Sharma, P.K. and De Datta, S.K., “Effects of puddling on soil physical properties and processes.”,Soil Physics and Rice, Los Banos,Philippines, 1985,pp.337-357.
[24]Stoop, W. A., N. Uphoff and A. Kassam, “A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farm systems forresource-poor farmers,” AgricSyst, Vol. 71,no. 3, 2002, pp. 249-274.
[25]Ting Cheh-Shyh, Tsou I. and Lu Jung-Hsing,”A study on the estimation of groundwater recharge by agriculture irrigation”, Irrig. and Drain. , Vol. 54,2005, pp.339-351.
[26]Uphoff N, Randriamiharisoa R, Reducing water use in irrigated rice production with the Madagascar System of Rice Intensification (SRI). In: Bouman BA, Hengsdijk H, Hardy B, Bindraban PS, Thuong TP, Ladha JK (eds) Water-wise rice production. International Rice Research Institute, Los Banos. ,2002.
[27]Van Genuchten.,”A close-form equation for predicting the hydraulic conductivity of unsaturated soils”﹐Soil Sci. Soc. ,Vol.44, 1980,pp.892-896.
[28]Warrick, A W.,” Numerical approximation of Darcian flow through unsaturated soil.”, Water Resow. Res., 27,1991,pp.1215-1222.
[29]Wickham, T.H. and Singh, V.P., “Water movement through wet soil.” In: Soils and Rice. International Rice Research Institute, Los Banos, Philippines,1978﹐pp.337-357.
[30]Wijebandara D.M.D.I., G.S. Dasog, P.L. Patil and M. Hebbar,”Effect of Nutrient Levels and Biofertilizer on Growth and Yield of Paddy under System of Rice Intensification (SRI) and Conventional Methods of Cultivation”, Tropical Agricultural Research, Vol. 20,2008,pp.343-353.
[31]Wopereis, M. C. S., B. A. M. Bouman, M. J. Kropff, H. F. M ten Berge and A. R. Maligaya, “Water use efficiency of flooded rice fields. (I) Validation of the soil-water balance model SAWAH,” Agricultural Water Managet, Vol. 26, no. 4, 1994, pp. 277-289.
[32]Wopereis, M.C.S. , B. A. M. Bouman, M. J. Kropff, H. F. M. ten Berge, T. P. Tuong., “Water use efficiency of flooded rice fields. (II) Percolation and seepage losses.”, Agricultural Water Management ,Vol. 26,1994 pp.291-304.
[33]Wopereis,M.C.S.﹐Wosten, J.H.M., Bouma J. and Woodhead, T.,”Hydraulic resistance in puddled rice soils: measurement and effects on water movement.”, Soil Tillage Res., Vol.24,1992,pp.199-209.
[34]Yang C, Yang L, Ouyang Z, “Organic carbon and fraction in paddy soil as affected by different nutrient and water regimes.”,Geoderma Vol 124,2005,pp.133-142.
[35]Yang C.M, Yang L.Z, Yang YX, Ouyang Z,” Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils.” , Agric Water Manag 70, pp.67-81.
[36]Zaslavsky, D.,”Theory of unsaturated flow into a non-uniform soil profile.”, Soil Sci., 97,1964,pp.400-410.
[37]Zhao, L.M., L. H. Wu, Y. Li, Animesh S, D. Zhu and N. Uphoff “Comparisons of yield, water use efficiency, and soil microbial biomass as affected by the system of rice intensification.” ,Commun Soil Sci Plant, Vol. 41,2010, pp.1-12.
[38]丁澈士、廖秋榮、林龍海,農業灌溉用水對地下水補注影響之調查評估(I):水稻灌溉部份研究,財團法人曹公農業水利研究發展基金會,1997。
[39]行政院農業委員會,「加強推動水田三生功能評估與執行」,2011,第9-14頁。
[40]行政院農業委員會,「加強推動水田三生功能評估與執行」,2011,第59-61頁。
[41]行政院農業委員會,農田水利業務簡介,1999,第24-26頁。
[42]行政院農業委員會,灌溉排水營運管理第二版,2002,第4-27頁。
[43]李光敦,水文學,台北市,五南圖書出版股份有限公司,2002,第127-129 頁。
[44]林達雄、楊明風、林克明,伍、水稻灌溉用水,台北市七星農田水利研究發展基金會,1998,農業工程研究中心編印。
[45]徐年盛、張德鑫、郭哲昆,「集水廊道對濁水溪沖積扇地下水影響之研究」,農業工程研討會論文集,1998。
[46]能邦科技顧問股份有限公司,台灣地區地下水補注量估算,經濟部水資源局,2000。
[47]張格綸,應用蒸發皿係數推估地區蒸發散量之研究,碩士論文,國立成功大學資源工程學系,台南,2007。
[48]張興亞,灌溉水滲漏之數值模擬,碩士論文,私立中原大學土木工程研究所,桃園,2002。
[49]曹以松,林俊男等,「集集共同引水計畫-人工補注技術即可行性實施計畫」,財團法人農業工程研究中心研究報告,1987,第52-99頁。
[50]陳世楷,「都會區水田公益功能之調查與推廣」,行政院農業委員會推廣水田生態環境保護及地下水涵養補注計畫成果報告,2003,第9-1-9-22頁。
[51]陳世楷,水稻田入滲試驗與數值模擬,博士論文,台灣大學農業工程研所,台北,1999。
[52]陳世楷、張誠信、陳昆宏、葉峻麟,「應用土壤水分及氮平衡耦合模式評估坡地水稻田氮汙染潛勢」,農業工程學報,第58卷,第2 期,2012,第22-38 頁。
[53]陳尚、李德滋,「以土壤水分當量推算水稻灌溉需水量之研究」,農業工程學報,第10卷,第4期,1964,第15-40頁。
[54]陳豐文、陳獻、黃勝頂,「台灣地區農地迴歸水之潛勢分析」,台灣水利,第53卷,第3期,第74-89 頁,2005。
[55]陳豐文、劉振宇,「水收支平衡應用於水田灌溉用水消耗特性之評估」,農業工程學報,第59卷,第1期,2013,第77-98頁。
[56]曾琮愷,隧道開挖滲流現象之模擬 ,碩士論文,私立中原大學土木工程學系,桃園,2002。
[57]馮秋霞、許榮庭、李振誥,「嘉南地區水田灌溉對地下水補注影響之評估」,第二屆地下水資源及水質保護研討會論文集,1997,第473-484頁。
[58]黃兆煌,水稻田翻耕狀態對地下水補注之影響研究,碩士論文,屏東科技大學土木工程研究所,屏東,1998。
[59]黃佳雯,地下水模式工具於污染控制場址範疇界定之研析,碩士論文,國立台灣大學環境工程學研究所,台北,2005。
[60]楊宗穎,應用地化模式模擬蘭陽平原含砷地下水之傳輸與宿命,碩士論文,國立台北科技大學土木與防災所,台北,2012。
[61]楊啟宏,排水管配置功效評估之數值模擬,碩士論文,國立台灣科技大學營建工程系,台北,2007。
[62]經濟部水利署,2011,「雲林內陸地層下陷地區地下水抽水機制之探討與評估」。
[63]經濟部水利署,2011,台灣水文年報第一部分-雨量。
[64]葉峻麟,非點源污染監測分析-以集水區水稻田為例,碩士論文,國立台北科技大學土木與防災所,台北,2012。
[65]鄒褘、葉一隆及王裕民,「休耕水稻田蓄水對地下水涵養補注之影響-以彰化田中休耕示範田為例」,第九屆水利工程研討會,1998,第G173-179頁。
論文全文使用權限:同意授權於2013-08-20起公開