現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:GPRMAX模擬地下水位之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Study on Simulation of Groundwater Table
Using GPRMAX [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:101
出版年度:102
中文姓名:陳文翊
英文姓名:Wen-Yi Chen
研究生學號:100428029
學位類別:碩士
語文別:中文
口試日期:2013-07-12
論文頁數:94
指導教授中文名:陳水龍
口試委員中文名:康裕明;李坤發
中文關鍵詞:透地雷達地下水GPRMAX 2D/3DMATLAB非破壞性檢測
英文關鍵詞:Ground-Penetrating RadarGroundwaterGPRMAX 2D/3DMATLABNon-Destructive Survey
論文中文摘要:目前非破壞性檢測(Non-Destructive Survey)使用於探測地下水的方法很多,有監測井、鑽孔、開挖與透地雷達...等。但這些方法中又以透地雷達最具有快速、費用低,為非破壞檢測最佳工具之一。但常受判讀人、事、時、地、物這五大原因而有所誤差,進而造成後續判斷上的歧見。
對此國內外專家學者發展出使用數值模擬方法,輔助增加透地雷達剖面資料準確度,也增加資料判讀解釋上之依據。本研究採用GPRMAX數值軟體對台中東勢林場的地下水位置做2D/3D的模擬,並與透地雷達剖面資料結果來做比對。
模擬比對結果顯示,透地雷達能顯示出地下水位的位置,GPRMAX模擬2D和3D結果與透地雷達剖面資料比對,其無論2D或3D相似吻合度極高。顯示
GPRMAX 2D/3D可用來模擬透地雷達檢測的地下水位置,有很高的準確度及可信度。
論文英文摘要:Non-destructive survey is used in groundwater detecting in many ways including monitoring wells, boring, excavation and ground-penetrating radar. Among all, the ground-penetrating radar provides one of the best non-destructive survey tools for it is quick and inexpensive. However, different interpretations occur in subsequent judgments as errors emerge due to the who, what, when, where and how involved in the judgments made.
Therefore numeric simulation methods have been developed to help increase the accuracy of cross-sectional data obtained by the ground-penetrating radar as well as to improve the basis on which data interpretation is made. In this study, the numeric analysis program, GPRMAX, was used to perform 2D/3D simulations of groundwater level at the Tungshih Forest, Taichung, and the simulation results were compared with the cross-sectional data from ground-penetrating radar.
The comparison showed that the ground-penetrating radar is capable of indicating ground water level. The comparison of the 2D and 3D simulation results from GPRMAX to the cross-sectional data from ground penetrating radar suggested extreme level of matching, indicating that GPRMAX 2D/3D can be used for the simulation of groundwater level as ground-penetrating radar is and provides high accuracy and credibility.
論文目次:摘 要 ................................................................................................................................ i
ABSTRACT ...................................................................................................................... ii
誌 謝 ............................................................................................................................... iv
目 錄 ............................................................................................................................... v
表目錄 ............................................................................................................................ vii
圖目錄 ........................................................................................................................... viii
第一章 緒論 .................................................................................................................... 1
1.1前言 .................................................................................................................... 1
1.2研究動機 ............................................................................................................ 2
1.3研究目的 ............................................................................................................ 2
第二章 文獻回顧 ............................................................................................................ 4
2.1 透地雷達發展沿革 ........................................................................................... 4
2.1.1 FDTD模擬GPR相關研究文獻 ............................................................ 7
2.2 相關研究文獻之回顧 ....................................................................................... 9
2.2.1 地下水相關文獻 .................................................................................... 9
2.2.2 透地雷達應用於地下水之相關研究文獻 .......................................... 10
第三章 透地雷達及GPRMAX模擬 ........................................................................... 11
3.1 透地雷達基本理論 ......................................................................................... 11
3.1.1 馬克斯威爾(Maxwell)方程式.............................................................. 12
3.1.2 反射外貌 (reflection configuration) .................................................... 16
3.1.3 波的極性 .............................................................................................. 17
3.2 地層介質影響參數 ......................................................................................... 18
3.2.1 雷達能量傳遞方式 .............................................................................. 23
3.2.2 雷達探測深度與速度之求法 .............................................................. 23
3.3施測參數設定 .................................................................................................. 26
3.3.1現地資訊收集與勘察 ........................................................................... 26
3.3.2儀器參數設定 ....................................................................................... 26
3.4 透地雷達資料處理與施測流程 ..................................................................... 29
3.4.1 透地雷達資料處理 .............................................................................. 29
3.4.2 透地雷達施測流程 .............................................................................. 33
3.4.3 圖像判讀 .............................................................................................. 37
3.5 時域有限差分法(FDTD)簡介 ........................................................................ 37
3.5.1 完美匹配層(PML:Perfect Matching Layer) ...................................... 40
3.6 MATLAB軟體 ................................................................................................. 42
3.7 GPRMAX模擬介紹 ........................................................................................ 43
3.7.1 GPRMAX 2D模擬GPR ....................................................................... 44
3.7.2 GPRMAX 3D模擬GPR ....................................................................... 45
第四章 案例分析與結果 .............................................................................................. 48
4.1 案例一 ............................................................................................................. 48
4.1.1 地理位置介紹-東勢林場 ..................................................................... 48
4.1.2 場址概述-案例一 ................................................................................. 50
4.1.3 測線規劃-案例一 ................................................................................. 52
4.1.4 施測檔案處理 ...................................................................................... 52
4.2 GPRMAX2D/3D模擬案例一 ......................................................................... 57
4.2.1 土層參數蒐集-東勢林場 ..................................................................... 57
4.2.2 現地模型建置 2D ................................................................................ 58
4.2.2.1 台中東勢林場模擬地下水 2D ......................................................... 59
4.2.2.2 2D東勢林場模擬結果比對 ............................................................... 60
4.2.3 3D現地模型建置 .................................................................................. 60
4.2.3.1台中東勢林場模擬地下水3D ........................................................... 61
4.2.3.2 3D模擬結果與比對-案例一 ............................................................. 62
4.3 案例二 ............................................................................................................. 68
4.3.1 地理位置介紹-北科工地 ..................................................................... 68
4.3.2 場址概述-案例二 ................................................................................. 69
4.3.3 測線規劃-案例二 ................................................................................. 70
4.4 GPRMAX2D/3D模擬案例二 ......................................................................... 72
4.4.1 土層參數蒐集-北科工地 ..................................................................... 72
4.4.2 2D現地模型建置 .................................................................................. 73
4.4.2.1 2D 北科工地模擬結果比對 .............................................................. 74
4.4.3 3D現地模型建置 .................................................................................. 75
4.4.3.1 3D模擬結果比對-案例二 ................................................................. 75
第五章 結論與建議 ...................................................................................................... 84
5.1 結論 ................................................................................................................. 84
5.2 建議 ................................................................................................................. 85
參考文獻 ........................................................................................................................ 86
附錄 ............................................................................................................................... 94
論文參考文獻:[1] Beres, M. and Haeni, F. P, "Application of ground‐penetrating‐radar Methods in Hydrogeologie Studies." Ground Water, vol.29, no.3, 1991, pp.375-386.
[2] Bano, M., Loeffler, O. and Girard, J. F. , "Ground penetrating radar imaging and time-domain modelling of the infiltration of diesel fuel in a sandbox experiment." Comptes Rendus Geoscience, vol.341, no.10, 2009, pp.846-858.
[3] Calhoun, J., "A finite difference time domain (FDTD) simulation of electromagnetic wave propagation and scattering in a partially conducting layered earth." Geoscience and Remote Sensing, IEEE, Vol. 2, 1997.
[4] Cagnoli, B. and Ulrych, T. J., "Singular value decomposition and wavy reflections in ground-penetrating radar images of base surge deposits." Journal of applied geophysics, vol.48, no.3, 2001, pp.175-182.
[5] Conroy, J. P., and Radzevicius , S. J., "Compact MATLAB code for displaying 3D GPR data with translucence." Computers & geosciences, vol.29, no.5, 2003, pp. 679-681.
6] Chern, S. G., Hu, R. F., Li, C. Y., Pei, K. C. and Lin, D. W., "A Research Combines Geo-Technique Test and a Three Dimensional Image GPR Inspection for Rigid Pavement Pumping Failure." Journal of Marine Science and Technology, vol.13, no.1, 2005, pp.11-19.
[7] Chen, C. S. and Jeng, Y. , "Nonlinear data processing method for the signal enhancement of GPR data." Journal of Applied Geophysics, vol.75, no.1, 2011, pp. 113-123.
[8] Warren, C., and Giannopoulos, A., "Numerical Modelling Of Commericial GPR Antennas." Proceedings of the 21st EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, 2008.
[9] Ayala-Cabrera, D., Izquierdo, J., Montalvo, I. and Perez-Garcia, R., "Water supply system component evaluation from GPR radargrams using a multi-agent approach." Mathematical and Computer Modelling, 2011.
[10] Chen, C. S. and Jeng, Y. , "Nonlinear data processing method for the signal enhancement of GPR data." Journal of Applied Geophysics, vol.75, no.1, 2011, pp. 113-123.
[11] Drossaert, F. H. and Giannopoulos, A. , "Complex frequency shifted convolution PML for FDTD modelling of elastic waves." Wave Motion, vol.44, no.7, 2007, pp.593-604. [12] De Menezes Travassos, J. and de Tarso Luiz Menezes, P., "GPR exploration for groundwater in a crystalline rock terrain," Journal of applied geophysics, vol.55, no.3, 2004, pp.239-248.
[13] Doetsch, J., Linde, N., Pessognelli, M., Green, A. G. and Gunther, T., "Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization." Journal of Applied Geophysics, vol.78, 2012, pp.68-76.
[14] Dong, L., Carnalla, S. and Shinozuka, M., "GPR survey for pipe leakage detection: experimental and analytical study." SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2012.
[15] Fu, L., Liu, S. and Liu, L., "Numerical simulations and analysis for airborne ground penetrating radar." Proceedings of the 14th International Conference on Ground Penetrating Radar (GPR), 2012.
[16] Feng, X. and Sato, M., "Estimation of 3D velocity model by SAR-GPR and its application to landmine detection." Proceedings of the 7th SEGJ international symposium-imaging technology.
[17] Giannopoulos, A., "GprMax2D/3D User’s Manual, version 2." Edinburgh, Ecosse, 2005.
[18] Grant, G. P., and Gerhard, J. I., "Simulating the dissolution of a complex dense nonaqueous phase liquid source zone: 2. Experimental validation of an interfacial area–based mass transfer model." Water Resources Research, vol.43, no.12, 2007.
[19] Gurbuz, A. C., McClellan, J. H. and Scott, W. R., "Compressive sensing for GPR imaging." Signals, Systems and Computers, 2007.
[20] Gan Fu-ping,「利用綜合物探方法探測地下水流通道」,地質與資源,第三期,2010,第262-266頁。
[21] Gong, Z. M. and Zhai, B., "Numerical Simulation Modeling of GPR on Road Disease." Applied Mechanics and Materials, vol.178, 2012, pp.1463-1468.
[22] Haeni, F. P., Buursink, M. L., Costa, J. E., Melcher, N. B., Cheng, R. T. and Plant, W. J., "Ground penetrating radar methods used in surface-water discharge measurements." Proceedings of the 8th International Conference on Ground Penetrating Radar (GPR), 2000.
[23] Hamrouche, R., Klysz, G., Balayssac, J. P., Rhazi, J. and Ballivy, G., "Simulation and Detection Limit of EM Waves in Masonry Structures with Application of an Algorithm for Image Processing."Progress In Electromagnetics Research Symposium Proceedings, 2011, pp.20-23.
[24] Irving, J. D., "Improving tomographic estimates of subsurface electromagnetic wave velocity obtained from ground-penetrating radar data," Diss. Stanford University, 2006.
[25] Irving, J. and Knight, R., "Numerical modeling of ground-penetrating radar in 2-D using MATLAB." Computers & Geosciences, vol. 32, no.9, 2006, pp. 1247-1258.
[26] Jiang Zhen-jiao, Bian Jian-min,「高密度電阻率成像法在水文地質領域中的應用」,水文地質工程地質,第二期,2010,第21-26頁。
[27] Jia Yan-hong, Zhao Chuan-yan,「RS與GIS技術在地下水研究之運用」,地下水,第33卷,第一期,2011.
[28] Li, J., Zeng, Z., Huang, L. and Liu, F. , "GPR simulation based on complex frequency shifted recursive integration PML boundary of 3D high order FDTD." Computers & Geosciences, vol.49, 2012, pp.121-130.
[29] Liu Li-ye,「FDTD分析透地雷達天線的輻射特性」,微波學報,第二十一卷,2005,91-95頁。
[30] Liu Si-Xin , Zeng Zhao-fa,「頻散介質中透地雷達波傳播的數值模擬」,地球物理學報,第一期,2007,第320-326頁。
[31] Lin Ming-Chih, " A Study on the Technologies for Detecting Underground Water Level and Processing Image."International Journal of Applied Science and Engineering, vol.7, no.1, 2009, pp.61-68.
[32] Liu, S. and Feng, Y., "Airborne GPR: Advances and numerical simulation."Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 2011, pp. 3397-3400.
[33] Millington, T. M. and Cassidy, N. J., "Optimising GPR modelling: A practical, multi-threaded approach to 3D FDTD numerical modelling." Computers & Geosciences, vol.36, no.9, 2010, pp.1135-1144.
[34] Sato, M. and Lu, Q., "Ground water migration monitoring by GPR," Geoscience and Remote Sensing Symposium, vol.1, 2002 , pp. 345-347.
[35] Seyfi, L. and Yaldız, E., "A novel software for an energy efficient GPR." Advances in Engineering Software, vol.41, no.10, 2010, pp.1195-1199.
[36] Spanoudakis, S. N. and Vafidis, A., "GPR-PRO: A MATLAB module for GPR data processing," Proceedings of the 13th International Conference on Ground Penetrating Radar (GPR), 2010, pp. 1-5.
[37] Sundstrom, N., Kruglyak, A. and Friborg, J. , "Modeling and simulation of GPR wave propagation through wet snowpacks: Testing the sensitivity of a method for snow water equivalent estimation." Cold Regions Science and Technology, vol.74, 2012, pp. 11-20.
[38] Topp, G. C., "Electro-magnetic determination of soil water content: measurement in coaxial transmission lines, " Water Resources, vol.16, 1980, pp.574-586.
[39] Tronicke, J., Blindow, N., Gross, R., and Lange, M. A. , "Joint application of surface electrical resistivity. and GPR-measurements for groundwater exploration on the island of Spiekeroog-northern Germany," Journal of Hydrology , vol. 223, 1999, pp. 44-53.
[40] Tai-quan, L., Mao, T. and Ji-sheng, X., "Optimization of short-pulse GPR transmit antenna," Wuhan University Journal of Natural Sciences, vol. 9, no.6, 2004, pp. 909-912.
[41] Uduwawala, D. and Norgren, M., "An investigation of some geometrical shapes and selection of shielding and lumped resistors of planar dipole antennas for GPR applications using FDTD," IEEE, vol. 44, no.12, 2006, pp.3555-3562.
[42] Witten, A., "Geophysica: MATLAB-based software for the simulation, display and processing of near-surface geophysical data." Computers & geosciences28.6 (2002): 751-762.
[43] Wilson, V., Power, C., Giannopoulos, A., Gerhard, J. and Grant, G., "DNAPL mapping by ground penetrating radar examined via numerical simulation," Journal of Applied Geophysics, vol.69, no. 3, 2009, pp. 140-149.
[44] Wang, Y., Wang, D., Shi, G. and Zhong, X., "GPR Simulation for the Fire Detection in Ground Coal Mine Using FDTD Method," Computer Science for Environmental Engineering and EcoInformatics. Springer Berlin Heidelberg, 2011, pp. 310-314.
[45] Walters, M. and Garcia, E., "Ground-penetrating radar signal processing for the detection of buried objects," SPIE, Vol.80,no. 17, 2011, pp.1-8.
[46] Yang Dikun,「地下水電磁法探測技術進展綜述」,工程地球物理學報,第五期,2007,第495-500頁。
[47] Yang Ni-ni,「透地雷達探測岩溶災害的研究」,江西科學,第一期,2009,第145-148頁。
[48] Ziani, T., Teguig, D., Takkouche, M. A., Derobert, X. and Benslama, M., "GPR modelling applied to vertical and horizontal resolution of buried objects," IEEE, ICEAA., 2011, pp.1-4.
[49] Ziani, T., Laour, M., Derobert, X. and Benslama, M. , "2 D simulation with the FDTD method of GPR modelling applied to the detection in stratified lossy medium using the frequency effect pulse," IEEE, ICEAA'09., 2009, pp.20-23.
[50] Zoubir, A. M., Chant, I. J., Brown, C. L., Barkat, B. and Abeynayake, C. , "Signal processing techniques for landmine detection using impulse ground penetrating radar," IEEE, vol. 2, no.1, 2002, pp. 41-51.
[51] Zhang, J., Li, F. and Yang, G., "Ray-based simulations of received signals from ground penetrating radar," IEEE, CIE'06., 2006, pp.1-4.
[52] 王佳彬,「透地雷達在地下水調查、間測與整治之應用」,石油季刊,第四十卷,第二期,2004,第27-36頁。
[53] 李焜發,透地雷達應用於大地工程與環境汙染之研究,博士論文,逢甲大學 土木及水利工程研究所,台中,2012。
[54] 周奇才,李炳杰,正宇軒,何自強,「基於GPRMAX2D的探地雷達圖像正演模擬」,工程物理學報,第五卷,第四期,2008,第396-399頁。
[55] 郭名峻,砂箱模型模擬透地雷達於油汙染探測之研究,碩士論文,國立台北科技大學土木與防災研究所,台北,2009。
[56] 梁昇,「穿地雷達回波的原理及其應用於地下水水位之偵測」,農林學報,第三十九卷,第二期,1990,第201-219頁。
[57] 陳志松,反射探勘數據重建及其淺層地質應用,博士論文,國立台灣師範大學地球科學系研究所,台北,2011。
[58] 曹鈞敏,林文勝,蕭健雄,「台灣地區地下水現況與管理決策支援系統發展」,水文地質調查與應用研討會,台北,2003 ,第25-52頁。
[59] 馮德山,「基於單軸各向異性完全匹配層邊界條件的ADI-FDTD 三維GPR全波場正演」,中南大學學報,第八期,2011,2363-2371頁。
[60] 黃韋華,透地雷達應用於地下管線物探勘之研究,碩士論文,國立台北科技大學土木與防災研究所,台北,2005。
[61] 彭騰衝,透地雷達應用於地下輕-非水相液體汙染探測之研究,碩士論文,國立台北科技大學,台北,2007。
[62] 喻振華,馮德山,戴前偉,何繼善,「複雜地電模型的探地雷達時域有現差分正演」,物探化探計算技術,第二十七卷,第四期,2005,第279-283頁。
[63] 楊潔豪、廖國彰,「透地雷達探測與應用」,地質,第14卷,第二期,1994,第115 -118頁。
[64] 蔣宗祐,透地雷達應用於地下游汙染探測之研究,碩士論文,國立台北科技大學,台北,2008。
[65] 蔡盛宇,透地雷達監測地下水及MATLAB模擬研究,碩士論文,國立台北科技大學土木與防災研究所,台北,2012。
[66] 滕彥國,「測氡技術在泉州清源山地下水源勘查中地應用」,物探化探計算技術,第一期,2011,第75-78頁。
[67] 薛桂霞,王鵬,「探地雷達時域有現差分法正演模擬」,物探化探計算技術,第30卷,第三期,2006,第244-246頁。
[68] 謝其達,透地雷達應用於鋼筋與鋪面厚度檢測之研究,碩士論文,國立台北科技大學土木與防災研究所,台北,2006。
[69] 譚仲哲,童慶斌,「氣候變遷對台北地下水補注之衝擊」,農業工程學報,第五十四卷,第一期,2008,第1-15頁。
論文全文使用權限:同意授權於2015-08-15起公開