現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:應用概似不確定性估計(GLUE)於集水區營養鹽總最大日負荷規劃 [以論文名稱查詢館藏系統]
論文英文名稱:The Application of Generalized Likelihood Uncertainty Estimation (GLUE) to A Nutrient Total Maximum Daily Load (TMDL) Plan [以論文名稱查詢館藏系統]
英文姓名:Heng-Yi Shih
英文關鍵詞:nonpoint source pollutionnutrientSWAT modelSWAT-CUPuncertainty analysisLHSGLUETMDLMOSBMPs
論文中文摘要:總最大日負荷(Total Maximum Daily Load, TMDL)是目前美國環保署在全國積極推動的集水區污染總量管理之規劃,而總最大日負荷中的安全差距量(Margin of Safety, MOS),一般皆以主觀且任意的百分率估算,欠缺較嚴謹的學理分析,所以本研究試圖將模式模擬的不確定性分配到安全差距量。
本研究旨在應用SWAT(Soil Water Assessment Tool)模式結合不確定性分析,規劃翡翠水庫營養鹽之總最大日負荷。研究收集1995年至2011年翡翠水庫集水區之氣象、水文與地文資料,應用概似不確定性估計(Generalized Likelihood Uncertainty Estimation, GLUE)結合拉丁高階方塊取樣法(Latin Hypercube Sampling, LHS)進行模式檢定及不確定性分析,並以驗證後的SWAT模擬來推估翡翠水庫集水區長期的汙染負荷。
本研究按照甲類水體水質標準,分別針對翡翠水庫氨氮、硝酸鹽氮和總磷規劃總最大日負荷,並將概似不確定性估計之不確定性範圍納入總最大日負荷規劃中,量化安全差距量。研究結果顯示模擬的水庫硝酸鹽氮、氨氮、總磷安全差距量分別佔TMDL比例為0.47%、5.33%、22.97%。而模式模擬的水庫總磷超過總最大日負荷,需要進行污染負荷削減,所以本研究以模式進一步模擬五種最佳管理作業(Best Management Practices, BMPs),分別為階段平台(Terrace)、田埂(Field border)、肥料混入(Manure incorporation)、肥料管理(Nutrient Management)與邊坡穩定結構物(Grade Stabilization Structure),來削減總磷負荷,其中以肥料混入對總磷的削減效率為最好。另外模擬結果顯示五種最佳管理作業組合之複合式最佳管理作業,對總磷削減效率為42.85%,可使翡翠水庫15年年平均總磷模擬最大濃度(0.0173 mg/l)低於總最大日負荷(0.02 mg/l)。
論文英文摘要:The Total Maximum Daily Load (TMDL) plan is a main watershed management approach to improve the impaired water quality under the Clean Water Act of USA. In addition, margin of safety (MOS), one of the major components in TMDL implementation, which accounts for uncertainties about the relationship between pollutant loads and receiving water quality, is usually evaluated by a specified percentage instead of more precise quantification. This research aims to scientifically quantify the MOS in TMDL program by employing the uncertainty analysis for model’s predictions.
The SWAT (Soil and Water Assessment Tool) model’s inputs and their uncertainty effects on model simulations for assessing the nutrient loadings in Feitsui Reservoir watershed were fully investigated. The effects of output uncertainty in model input parameters were evaluated by employing Generalized Likelihood Uncertainty Estimation (GLUE) based on Latin hypercube Sampling (LHS). The results of uncertainty analysis revealed that the MOS value of the reservoir nitrate nitrogen, ammonia nitrogen, total phosphorus (TP) loadings are 0.47%, 5.33%, and 22.97% of TMDL amounts, respectively.
Moreover, the validated SWAT model will be employed to evaluate the long-term water quality impacts due to the implementation of several Best Management Practice (BMP) scenarios. In the first place, the results of TMDL calculation show that the simulated average annual TP maximum concentration (0.0349 mg/l) has exceeded the maximum allowable concentration (0.02 mg/l) which was calculated based on the water quality standards of Category A water bodies. Therefore, second BMP scenarios were developed to reduce TP loading and elevate the water quality within standard of Category A.
Various BMP scenarios consisting of terrace, field border, manure incorporation, nutrient management, and grade stabilization structure are further simulated for TP reduction. The simulation results show that manure incorporation is the best BMP scenario. Additionally, the implementation of five BMPs combination scenario will make average annual TP maximum concentration (0.0173 mg/l) to satisfy the water quality standard (0.02 mg/l).
This study concluded that GLUE combines LHS can be effectively applied to assess uncertainty, and quantify the MOS component in a more scientific approach during TMDL assessment. The results of this study demonstrates an effective management approach for administration authority to control pollution efficiently and protect water quality with specified standards for all water bodies.
論文目次:中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究架構與流程 5
第二章 文獻回顧 8
2.1 SWAT模式之應用 8
2.2 不確定性分析 9
2.2.1 不確定性的來源 9
2.2.2 不確定性分析方法 10
2.2.3 應用不確定性分析之相關文獻 14
2.3 總最大日負荷之不確定性 15
第三章 研究方法 19
3.1 SWAT模式 19
3.1.1 模式發展 19
3.1.2 模式介紹 21
3.2 SWAT-CUP 38
3.3 研究區域 38
3.3.1 子集水區之劃分 39
3.3.2 地形 40
3.3.3 土地利用分類 40
3.3.4 土壤種類分布 41
3.3.5 集水區點源分布 42
3.3.6 測站位置分布 43
3.4 資料收集與調查 45
3.4.1 氣象資料 45
3.4.2 監測資料 45
3.4.3 茶園施肥 46
3.4.4 農地施肥 48
3.5 不確定性分析 48
3.5.1 拉丁高階方塊取樣法 48
3.5.2 概似不確定性估計 50
3.6 模擬階段 54
3.7 配適度指標 58
3.8 預測不確定性指標 60
3.9 總最大日負荷規劃 60
3.10 最佳管理作業情境模擬 61
第四章 結果與討論 65
4.1 模式檢定、不確定性分析與驗證結果 67
4.1.1 坪林站流量與水庫入流量 68
4.1.2 坪林站泥砂 76
4.1.3 坪林站營養鹽 81
4.1.4 水庫營養鹽 105
4.1.5 預測不確定性指標整理 133
4.2 總最大日負荷規劃結果 133
4.2.1 硝酸鹽氮 134
4.2.2 氨氮 135
4.2.3 總磷 136
4.3 最佳管理作業模擬結果 138
4.3.1 階段平台 138
4.3.2 田埂 139
4.3.3 肥料混入 140
4.3.4 肥料管理 141
4.3.5 邊坡穩定結構物 142
4.3.6 複合式最佳管理作業 143
第五章 結論與建議 149
5.1 結論 149
5.2 建議 151
參考文獻 153
論文參考文獻:1. A. M. Sexton, A. Shirmohammadi, A. M. Sadeghi and H. J. Montas, "A stochastic method to characterize model uncertainty for a nutrient TMDL," Transactions of the ASABE, vol. 54, no. 6, 2011, pp. 2197-2207.
2. A. M. Sexton, A. Shirmohammadi, A. M. Sadeghi and H. J. Montas, "Impact of parameter uncertainty on critical SWAT output simulations," Transactions of the ASABE, vol. 54, no. 2, 2011, pp. 461-471.
3. A. M. Sexton, Evaluation of SWAT model applicability for waterbody impairment identification and TMDL analysis, Ph.D. Thesis, University of Maryland, College Park, United States, 2007.
4. A. Shirmohammadi, I. Chaubey, R. D. Harmel, D. D. Bosch, R. Muñoz-Carpena, C. Dharmasri, A. Sexton, M. Arabi, M. L. Wolfe, J. Frankenberger, C. Graff and T. M. Sohrabi, "Uncertainty in TMDL models," Transactions of the ASABE, vol. 49, no. 4, 2006, pp. 1033-1049.
5. ASAE (American Society of Agricultural Engineers), Design, Layout, Construction and Maintenance of Terrace Systems, 2003.
6. C. S. Melching, Reliability estimation, 1995. In V. P. Singh (Ed.), Computer models of watershed hydrology, USA: Water Resources Publishers.
7. C. Santhi, J. G. Arnold, J. R. Williams, W. A. Dugas, R. Srinivasan and L. M. Hauck, "Validation of the SWAT model on a large river basin with point and nonpoint sources," JAWRA: Journal of the American Water Resources Association, vol. 37, no. 5, 2001, pp. 1169-1188.
8. D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel and T. L. Veith, "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations," Transactions of the ASABE, vol. 50, no. 3, 2007, pp. 885-900.
9. D. W. Dilks and P. L. Freedman, "Improved consideration of the margin of safety in total maximum daily load development," Journal of Environmental Engineering, vol. 130, no. 6, 2004, pp. 690-694.
10. E. Chung, K. Kim, K. S. Lee and S. J. Burian, "Incorporating uncertainty and objective load reduction allocation into the total maximum daily load process in korea," KSCE Journal of Civil Engineering, vol. 15, no. 7, 2011, pp. 1289-1297.
11. G. Vachaud and T. Chen, "Sensitivity of a large-scale hydrologic model to quality of input data obtained at different scales; distributed versus stochastic non-distributed modelling," Journal of Hydrology, vol. 264, no. 12, 2002, pp. 101-112.
12. H. V. Gupta, S. Sorooshian and P. O. Yapo, "Status of automatic calibration for hydrologic models comparison with multilevel expert calibration," Journal of Hydrologic Engineering, vol. 4, no. 2, 1999, pp. 135-143.
13. H. X. Zhang and S. L. Yu, "Applying the first-order error analysis in determining the margin of safety for total maximum daily load computations," Journal of Environmental Engineering, vol. 130, no. 6, 2004, pp.664-673.
14. J. R. Benjamin and C. A. Cornell, Probability, statistics and decision for civil engineer, New York: McGraw-Hill, 1970.
15. J. Singh, H. V. Knapp and M. Demissie, "Hydrologic Modeling of the Iroquois River Watershed Using HSPF and SWAT," Illinois Department of Natural Resources and the Illinois State Geological Survey, Illinois State Water Survey Contract Report 2004-08, pp.1-24
16. J. Yang, P. Reichert, K. C. Abbaspour, J. Xia and H. Yang, "Comparing uncertainty analysis techniques for a SWAT application to the chaohe basin in china," Journal of Hydrology, vol. 358, no. 1, 2008, pp. 1-23.
17. K. Beven and A. Binley, "The future of distributed models: Model calibration and uncertainty prediction," Hydrological Processes, vol. 6, no. 3, 1992, pp. 279-298.
18. K. C. Abbaspour, J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, J. Zobrist and R. Srinivasan, "Modelling hydrology and water quality in the pre-alpine/alpine thur watershed using SWAT," Journal of Hydrology, vol. 333, no. 2, 2007, pp. 413-430.
19. K. C. Abbaspour, SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs - A User Manual, Eawag, Switzerland, 2013, pp.1-103.
20. K. R. Douglas‐Mankin, R. Srinivasan and J. G. Arnold, "Soil and Water Assessment Tool (SWAT) model current developments and applications," Transactions of the ASABE, vol. 53, no. 5, 2010, pp. 1423-1431.
21. M. Arabi, R. S. Govindaraju and M. M. Hantush, "A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices," Journal of Hydrology, vol. 333, no. 2, 2007, pp. 459-471.
22. M. C. Jon, Decision Rationale Total Maximum Daily Loads Recreation Use (Bacteria) Impairments James River and Tributaries Richmond City, Virginia, Philadelphia: U. S. EPA, Region III, 2010.
23. M. D. McKay, R. J. Beckman and W. J. Conover, "Comparison of three methods for selecting values of input variables in the analysis of output from a computer code," Technometrics, vol. 21, no. 2, 1979, pp. 239-245.
24. M. D. McKay, Sensitivity and Uncertainty Analysis Using a Statistical Sample of Input Values, 1988. In Y. Ronen (Ed.), Uncertainty Analysis, CRC Press, Boca Raton, FL, pp. 145-186.
25. M. E. Borsuk, C. A. Stow and K. H. Reckhow, "Predicting the frequency of water quality standard violations: A probabilistic approach for TMDL development," Environmental Science & Technology, vol. 36, no. 10, 2002, pp. 2109-2115.
26. M. K. Jha, P. W. Gassman and J. G. Arnold, "Water quality modeling for the raccoon river watershed using SWAT," Transactions of the ASABE, vol. 50, no. 2, 2007, pp. 479-493.
27. M. Kang, S. Park, J. Lee and K. Yoo, "Applying SWAT for TMDL programs to a small watershed containing rice paddy fields," Agricultural Water Management, vol. 79, no. 1, 2006, pp. 72-92.
28. M. Karamouz, M. Taheriyoun, M. Seyedabadi and S. Behboodian, "Evaluation of uncertainties in the simulation of watershed nutrient load: A case study," World Environmental and Water Resources Congress 2009, Kansas City, Missouri, 2009, pp. 1-10.
29. M. M. Hantush, "Estimation of TMDLs and Margin of Safety Under Conditions of Uncertainty," World Environmental and Water Resources Congress 2009, Great Rivers, 2009, pp. 6215-6224.
30. P. Tuppad, N. Kannan, R. Srinivasan, C. G. Rossi and J. G. Arnold, "Simulation of Agricultural Management Alternatives for Watershed Protection," Water Resources Management, vol. 24, no. 12, 2010, pp. 3115-3144.
31. R. L. Iman and J. C. Helton, "An investigation of uncertainty and sensitivity analysis techniques for computer models," Risk Analysis, vol. 8, no. 1, 1988, pp. 71-90.
32. R. Rostamian, A. Jaleh, M. Afyuni, S. F. Mousavi, M. Heidarpour, A. Jalalian and K. C. Abbaspour, "Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran," Hydrological Sciences Journal, vol. 53, no. 5, 2008, pp. 977-988.
33. S. Franceschini and C. W. Tsai, "Incorporating reliability into the definition of the margin of safety in total maximum daily load calculations," Journal of Water Resources Planning and Management, vol. 134, no. 1, 2008, pp. 34-44.
34. S. L. Neitsch, J. G. Arnold, J. R. Kiniry and J. R. Williams, Soil and Water Assessment Tool Theoretical Documentation Version 2009, Texas: grassland, soil and water research laboratory, agricultural research service, 2011.
35. Soil Conservation Service Engineering Division, Urban hydrology for small watersheds, Washington, DC: U. S. Department of Agriculture, 1986.
36. SWAT Calibration Techniques https://docs.google.com/viewer?a=v&pid=forums&srcid=MTQ2MzE2NjI2ODQxNDQyNzc0OTABMDkxNTk2MjY5MDkzMjY4MDI4NTkBSWUtV1Y0Y0kxOUlKATQBAXYy
37. V. Novotny, Water Quality:Diffuse Pollution and Watershed Management, 2nd Edition, New York: John Wiley & Sons, 2003.
38. W. W. Walker Jr, "Consideration of variability and uncertainty in phosphorus total maximum daily loads for lakes," Journal of Water Resources Planning and Management, vol. 129, no. 4, 2003, pp. 337-344.
39. W. W. Walker Jr, Quantifying uncertainty in phosphorus TMDLs for lakes, Lowell, MA:NEIWPCC/EPA, 2001, pp. 1-22.
40. Y. Gong, Z. Shen, Q. Hong, R. Liu and Q. Liao, "Parameter uncertainty analysis in watershed total phosphorus modeling using the GLUE methodology," Agriculture, Ecosystems & Environment, vol. 142, no. 3, 2011, pp. 246-255.
41. Z. Shen, L. Chen and T. Chen, "Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: A case study of SWAT model applied to Three Gorges Reservoir Region, China," Hydrology and Earth System Sciences, vol. 16, no. 1, 2012, pp. 121-132.
42. Z. Shen, Q. Hong, H. Yu and R. Liu, "Parameter uncertainty analysis of the non-point source pollution in the Daning River watershed of the Three Gorges Reservoir Region, China," Science of the Total Environment, vol. 405, no. 1-3, 2008, pp. 195-205.
43. 于峰、史正濤、李濱勇、楊具瑞、彭海英,「SWAT 模型及其應用研究」,水土保持應用技術,第五卷,第二期,2008,第125-131頁。
44. 行政院農業委員會水土保持局,水土保持手冊。
45. 行政院農業委員會農糧署,作物施肥手冊,http://www.afa.gov.tw/publish_tree.asp?catid=70。
46. 行政院環境保護署,地面水體分類及水質標準,1998。http://law.epa.gov.tw/zh-tw/laws/309417667.html。
47. 吳政緯,翡翠水庫營養鹽之總最大日負荷規劃,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2010。
48. 林育丞,翡翠水庫集水區非點源污染削減效率評估與不確定性分析,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2012。
49. 林凱榮、陳曉宏、江濤,「基於 copula-glue 的水文模型參數不確定性研究」,中山大學學報:自然科學版,第四十八卷,第三期,2009,第109-115頁。
50. 柯強、趙靜、王少平、鄭文笛、尹大強,「最大日負荷總量 (TMDL) 技術在農業面源污染控制與管理中的應用與發展趨勢」,生態與農村環境學報,第二十五卷,第一期,2009,第85-91頁。
51. 范麗麗、沈珍瑤、劉瑞民、宮永偉,「基於 SWAT 模型的大寧河流域非點源污染空間特性研究」,水土保持通報,第二十八卷,第四期,2008,第133-137頁。
52. 秦福來、王曉燕、張美華,「基於 GIS 的流域水文模型. SWAT (soil and water assessment Too1) 模型的動態研究」,首都師範大學學報:自然科學版,第二十七卷,第一期,2006,第81-85頁。
53. 張利茹、管儀慶、王君、李星、戴泗君,「GLUE 法分析水文模型參數不確定性的研究」,水力發電,第三十六卷,第五期,2010,第14-16頁。
54. 敖良桂、彭彪,「一種基於水質決策的污染控制方法」,水利水電快報,第二十四卷,第二十二期,2003,第1-3頁。
55. 曹麗萍、王曉燕、廣新菊,「非點源污染控制管理政策及其研究進展」,地理與地理資訊科學,第二十卷,第一期,2004,第90-94頁。
56. 連以婷,水文模式之參數不確定性分析,碩士論文,臺灣大學生物環境系統工程學研究所學位元論文,臺北,2010。
57. 陳立宗,翡翠水庫集水區水文暨水質模擬,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2009。
58. 陳憲琦,結合 HSPF 模式與負荷延時曲線法推估北勢溪集水區變動的總量管制值,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2011。
59. 黃宇齊,翡翠水庫及水庫集水區水文暨水質模擬與其不確定性,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2010。
60. 廖倫偉,應用概似不確定性估計於溼地參數之不確定性分析,碩士論文,臺灣大學生物環境系統工程學研究所學位元論文,臺北,2011。
61. 榮琨、陳興偉、林文嬌,「晉江西溪流域非點源污染的 SWAT 模型類比」,亞熱帶資源與環境學報,第三卷,第四期,2008,第37-43頁。
62. 熊立華、衛曉婧、萬民,「水文模型兩種不確定性研究方法的比較」,武漢大學學報:工學版,第四十二卷,第二期,2009,第137-142頁。
63. 臺北翡翠水庫管理局,翡翠水庫操作年報,1995~2011。
64. 趙冬泉、王浩正、陳吉甯、王浩昌,「城市暴雨徑流模擬的參數不確定性研究」,水科學進展,第二十卷,第一期,2009,第45-51頁。
65. 劉豔麗、王國利、周惠成,「洪水預報不確定性分析及其在水庫調度決策中的應用研究」,水力發電學報,第二十九卷,第一期,2010,第92-96頁。
66. 潘登、任理、劉鈺,「應用分散式水文模型優化黑龍港及運東平原農田灌溉制度Ⅰ:模型參數的率定驗證」,水利學報,第四十三卷,第六期,2012,第717-725頁。