現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:利用田口法實驗設計提升水熱法合成 鋅鎂膨潤石之陽離子交換容量和層間距 [以論文名稱查詢館藏系統]
論文英文名稱:Improvement of Cation Exchange Capacity and Basal Spacing on Hydrothermal Synthesis Zn-Mg-Smectite using Taguchi Method [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:資源工程研究所
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:洪偉祥
英文姓名:Wei-Hsiang Hung
研究生學號:105798014
學位類別:碩士
語文別:中文
口試日期:2018/06/29
論文頁數:104
指導教授中文名:余炳盛
指導教授英文名:Bing-Sheng Yu
口試委員中文名:方建能;王玉瑞;陳惠芬
中文關鍵詞:水熱合成三八面體膨潤石田口法陽離子交換容量層間距
英文關鍵詞:Hydrothermal synthesisTrioctahedral smectiteTaguchi methodCation exchange capacityBasal spacing
論文中文摘要:膨潤石為常見的層狀矽酸鹽類,通常來自受風化的矽酸鹽類岩石礦物。膨潤石具陽離子交換容量、高比表面積以及熱穩定性等,因此廣泛用於眾多領域,像是: 製成奈米複合材料、吸附有害物質、催化劑應用和屏障高輻射廢棄物等。膨潤石的理想結構化學式為NaZ+3X(Al2(1-X)(Mg3X*(1-Y), Zn3X*Y)□)(Si4-ZAlZ)O10(OH, F)2。本研究利用田口法提升水熱合成三八面體膨潤石之陽離子交換容量與層間距。
在田口實驗設計法規劃中,本研究同時探討八個主要因子,包含: 礦化劑種類、礦化劑用量、Al及Zn藥品種類、反應時間、八面體中的Mg/Zn比、八面體中的Al/(Mg+Zn)比、四面體中的Si/Al比,另外以反應溫度、鈉過量程度及鹼性溶液作為干擾因子。以ICP-OES及XRD分析陽離子交換量與層間距。
研究結果顯示,主要影響陽離子交換容量的前三個因子為四面體中的Si/Al比、Al藥品種類及反應時間,而主要影響層間距的前三個因子為四面體中的Si/Al比、Al藥品種類及礦化劑種類。在此田口實驗規劃範圍內,最佳化膨潤石的陽離子交換容量與層間距分別提升至122.65(meq/100g)以及19.93(Å)。
論文英文摘要:Smectite is a class of phyllosilicates which usually form as weathering of silicate minerals and rock. Depending on the physico–chemical properties of smectites, such as cation exchange capacity, specific surface area, and thermal stability, smectites were widely used in applications including polymer nanocomposites, adsorbent of hazardous substance, catalytic use and barrier of high-level radioactive waste. The ideal structural formula of semctites can be expressed as NaZ+3X(Al2(1-X)(Mg3X*(1-Y),Zn3X*Y)□)(Si4-ZAlZ)O10(OH,F)2. In this study, Taguchi method was applied in the experiments to improve the cation exchange capacity and basal spacing of the synthesized smectite.
In this Taguchi experiment, eight factors were chosen as significant parameters, including type of mineralizer, mineralizer amount, type of Zn & Al source, reaction time, Mg/Zn ratio in octahedral sheet, Al/(Mg+Zn) ratio in octahedral sheet, and Si/Al ratio in tetrahedral sheet. In addition, reaction temperature、Na excess and alkali solution were chosen as noise parameters. The cation exchange capacity and basal spacing of the synthesized smectite were identified by inductively couple plasma optical emission (ICP-OES) and X-ray diffraction (XRD).
The results indicate that the Si/Al ratio in tetrahedral sheet, type of Al source and reaction time are three of the most important factors affect the of cation exchange capacity synthesized smectite. Si/Al ratio in tetrahedral sheet, type of Al source and type of mineralizer are three of the most important factors that affect the basal spacing of synthesized smectite. The cation exchange capacity and basal spacing of the synthesized smectite can reach up to 122.65(meq/100g) and 19.93(Å) respectively on the synthesis condition that optimized by Taguchi method.
論文目次:摘要 i
ABSTRACT ii
誌 謝 iv
目錄 v
圖目錄 viii
表目錄 x
第一章、緒論 1
1.1 前言 1
1.2 研究動機及目的 2
第二章、基礎理論與文獻回顧 4
2.1 黏土礦物的類型 4
2.1.1 高嶺石-蛇紋石族 6
2.1.2 膨潤石族 6
2.1.3 伊萊石-雲母族 7
2.1.4 綠泥石族 8
2.2 膨潤石之基本性質 8
2.2.1 蒙脫石之晶體結構 9
2.2.2 膨潤石之化學組成 10
2.2.3 膨潤石之基本特性 10
2.3 水熱合成法 14
2.3.1 概述 14
2.3.2 水熱法之原理 14
2.3.3 水熱法之反應機制 15
2.3.4 影響水熱反應之因素 17
2.3.5 水熱法之優缺點 18
2.4 田口方法 19
2.4.1 田口方法的規劃 20
2.4.2 田口方法的實驗 21
2.4.3 田口方法的分析 22
2.4.4 田口變異分析 23
2.5 前人研究和文獻探討 26
2.5.1 膨潤石相關文獻回顧 26
2.5.2 實驗參數之規劃與選擇 28
第三章、實驗方法與原理 31
3.1研究方法與流程 31
3.1.1 實驗藥品及器材 32
3.1.2 前驅物SiO2-Al2O3-MgO-ZnO-Na2O的製備 33
3.1.3前驅物各因子和L18直交表 34
3.1.4 水熱合成實驗步驟 37
3.1.5 膨潤石陽離子交換容量分析 39
3.1.6 膨潤石進行表面改質 41
3.1.7相純度和產率計算 43
3.2分析儀器原理及分析條件 44
3.2.1 X光繞射分析儀 44
3.2.2 感應耦合電漿發射光譜儀(ICP-OES) 47
3.2.3 掃描式電子顯微鏡(SEM) 50
第四章、實驗結果與討論 52
4.1 膨潤石產物之性質分析 52
4.2 田口參數分析 54
4.2.1 實驗參數對陽離子交換容量之影響分析 57
4.2.2實驗參數對改質膨潤石之影響分析 62
4.2.3干擾因子對陽離子交換容量和改質膨潤石層間距之影響 65
4.2.4最佳化實驗參數設定 67
4.3陽離子交換容量實驗步驟更改之探討 68
4.4改質層間距CTAB用量程度之探討 69
4.5最佳化參數與實驗驗證 70
4.5.1陽離子交換容量最佳化參數 70
4.5.2改質層間距最佳化參數 71
4.6最佳化參數-H因子修改 72
4.7 SEM 晶體顯微結構 74
第五章、結論與建議 76
參考文獻 78
附錄一 82
附錄二 91
附錄三 95
論文參考文獻:[1] 季桂娟、張培萍、姜桂蘭,膨潤土加工與應用(第二版),北京;化學工業出版社,2013。
[2] Murray, H.H., “Traditional and new applications for kaolin, smectite, and palygorskite: a general overview”, Applied clay science, vol.17, no.5-6, 2000, pp.207-221.
[3] Golubeva, O.Yu., Korytkova, E.N., Gusarov, V.V., “Hydrothermal synthesis of magnesium silicate montmorillonite for polymer-clay nanocomposites”, Russian journal of applied chemistry, vol.78, no.1, 2005, pp.26-32.
[4] Golubeva, O.Yu., Gusarov, V.V., “Layered silicates with a montmorillonite structure: Preparation and prospects for the use in polymer nanocomposites”, Glass Physics and Chemistry, vol.33, no.3, 2007, pp.237-241.
[5] He, H., Li, T., Tao, Q., Chen, T., Zhang, D., Zhu, J., Yuan, P., Zhu, R., “Aluminum ion occupancy in the structure of synthetic saponites: Effect on crystallinity”, American Mineralogist, vol.99, no.1, 2014, pp.109-116.
[6] Carrado, K.A., Decarreau, A., Petit, S., Bergaya, F., Lagaly, G., “Synthetic clay minerals and purification of natural clays”, Developments in clay science, vol.1, 2006, pp.115-139.
[7] Bergaya, F., Lagaly, G., “General introduction: clays, clay minerals, and clay science”, Developments in clay science, vol.1, 2006, pp.1-18.
[8] Zhang, D., Zhou, C.H., Lin, C.X., Tong, D.S., Yu, W.H., “Synthesis of clay minerals”, Applied Clay Science, vol.50, no.1, 2010, pp.1-11.
[9] Bailey, S.W., “Summary of recommendations of AIPEA nomenclature committee on clay mineral”, American Mineralogist, vol.65, 1980, pp.1-7.
[10] Grim, R.E., “Clay mineralogy”, 2nd edition, 1969, pp.57-525.
[11] Reinholdt, M., Miehé‐Brendlé, J., Delmotte, L., Tuilier, M.H., Le Dred, R., Cortes, R., Flank, A.M., “Fluorine route synthesis of montmorillonites containing Mg or Zn and characterization by XRD, thermal analysis, MAS NMR, and EXAFS spectroscopy”, European Journal of Inorganic Chemistry, vol.2001, no.11, 2001, pp.2831-2841.
[12] 李雅茹,水熱法合成三八面體滑鎂皂石之研究,碩士論文,國立臺北科技大學資源工程研究所,臺北,2008。
[13] 張鎮宇,微波水熱合成鋅膨潤石,碩士論文,國立臺北科技大學資源工程研究所,臺北,2011。
[14] 吳平霄,黏土礦物材料與環境修復,北京:化學工業出版社,2003,第3-56頁。
[15] 黃怡禎翻譯,礦物學,台北:地球科學文教基金會,2000,第535-536 頁。
[16] Reinholdt, M., Miehe-Brendle, J., Delmotte, L., Le Dred, R., “Synthesis and characterization of montmorillonite-type phyllosilicates in a fluoride medium”, 2005, pp.177-190.
[17] Kloprogge, J.T., Komarneni, S., Amonette, J.E., “Synthesis of smectite clay minerals: a critical review”, Clays and Clay Minerals, vol.47, no.5, 1999, pp.529-554.
[18] 柯揚船、皮特,斯壯,聚合物-無機奈米複合材料,臺北:五南圖書出版社股份有限公司,2004。
[19] 張修瑜,元素補償添加對於水熱合成鋅膨潤石,碩士論文,國立臺北科技大學資源工程研究所,臺北,2010。
[20] 俞懿珊,天然黏土之純化改質研究及其在環氧基板應用之性能探討,碩士論文,中原大學化學研究所,桃園,2006。
[21] Meleshyn, A., Bunnenberg, C., “Swelling of Na∕Mg-montmorillonites and hydration of interlayer cations: A Monte Carlo study”, The Journal of chemical physics, vol.123, no.7, 2005, pp.074706.
[22] 盧壽慈,粉體技術手冊,北京:化學工業出版社,2004,第46-51頁。
[23] 徐如人,龐文琴,無機合成與製備化學,臺北:五南圖書出版社,2004,第179-190頁。
[24] Laudise, R.A., “Crystal growth of electronic material ”, Elsevier Science, 1985, pp.159.
[25] Porter, D.A., Easterling, K.E., “Phase Transformations in Metals and Alloys”, 2004, New York: Taylor & Francis, pp.185-192.
[26] Chen, L., Zhou, C.H., Fiore, S., Tong, D.S., Zhang, H., Li, C.S., Ji, S.F., Yu, W.H., “Functional magnetic nanoparticle/clay mineral nanocomposites: preparation, magnetism and versatile applications”, Applied Clay Science, vol.127, 2016, pp.143-163.
[27] Rabenau, A., “The role of hydrothermal synthesis in preparative chemistry”, Angewandte Chemie International Edition, vol.24, no.12, 1985, pp.1026-1040.
[28] 李輝煌,田口方法─品質設計的原理與實務,新北:高立圖書有限公司,2012。
[29] Roy, R.K., “A primer on the Taguchi method”, 2010, Society of Manufacturing Engineers.
[30] Pascua, C.S., Ohnuma, M., Matsushita, Y., Tamura, K., Yamada, H., Cuadros, J., Ye, J., “Synthesis of monodisperse Zn-smectite”, Applied Clay Science, vol.48, no.1-2, 2010, pp.55-59.
[31] Golubeva O.Yu., “Effect of synthesis conditions on hydrothermal crystallization, textural characteristics and morphology of aluminum-magnesium montmorillonite”, Microporous and Mesoporous Materials, vol.224, 2016, pp.271-276.
[32] Vogels, R.J.M.J., Kerkhoffs, M.J.H.V., Geus, J.W., “Non-hydrothermal synthesis, characterisation and catalytic properties of saponite clays”, In Studies in Surface Science and Catalysis, 1995, pp.1153-1161.
[33] Prikhodko, R.V., Sychev, M.V., Astrelin, I.M., Erdmann, K., Hensen, E.J.M., Van Santen, R.A., “Nonhydrothermal synthesis and properties of saponite-like materials”, Russian journal of applied chemistry, vol.76, no.5, 2003, pp.700-705.
[34] Zhang, C., He, H., Tao, Q., Ji, S., Li, S., Ma, L., Su, X., Zhu, J., “Metal occupancy and its influence on thermal stability of synthetic saponites”, Applied Clay Science, vol.135, 2017, pp.282-288.
[35] Golubeva, O.Yu., Ul’yanova, N.Yu., Kostyreva, T.G., Drozdova, I.A., Mokeev, M.V., “Synthetic nanoclays with the structure of montmorillonite: Preparation, structure, and physico-chemical properties”, Glass Physics and Chemistry, vol.39, no.5, 2013, pp.533-539.
[36] Trujillano, R., Rico, E., Vicente, M.A., Rives, V., Sobrados, I., Sanz, J., “Saponites containing divalent transition metal cations in octahedral positions—Exploration of synthesis possibilities using microwave radiation and NMR characterization”, Applied Clay Science, vol.115, 2015, pp.24-29.
[37] Zawrah, M.F., Khattab, R.M., Saad, E.M., Gado, R.A., “Effect of surfactant types and their concentration on the structural characteristics of nanoclay”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.122, 2014, pp.616-623.
[38] He, H., Ma, L., Zhu, J., Frost, R.L., Theng, B.K., Bergaya, F., “Synthesis of organoclays: A critical review and some unresolved issues”, Applied Clay Science, vol.100, 2014, pp.22-28.
[39] 劉怡佑,利用田口法實驗設計提升水熱合成膨潤石之相純度和產率,碩士論文,國立臺北科技大學資源工程研究所,臺北,2017。
[40] Higashi, S., Miki, K., Komarneni, S., “Hydrothermal synthesis of Zn-smectites”, Clays and Clay Minerals, vol.50, no.3, 2002, pp.299-305.
[41] Bisio, C., Gatti, G., Boccaleri, E., Marchese, L., Superti, G.B., Pastore, H.O., Thommes, M., “Understanding physico–chemical properties of saponite synthetic clays”, Microporous and Mesoporous Materials, vol.107, no.1-2, 2008, pp.90-101.
[42] Spagnuolo, M., Martı́nez, C.E., Jacobson, A.R., Baveye, P., McBride, M.B., Newton, J., “Coprecipitation of trace metal ions during the synthesis of hectorite”, Applied Clay Science, vol.27, no.3-4, 2004, pp.129-140.
[43] Jaber, M., Miehé-Brendlé, J., “Synthesis, characterization and applications of 2: 1 phyllosilicates and organophyllosilicates: Contribution of fluoride to study the octahedral sheet”, Microporous and Mesoporous Materials, vol.107, no.1-2, 2008, pp.121-127.
[44] 余炳盛、張修瑜、洪偉祥,「修正配方化學式以提升合成鋅膨潤石之相純度」,鑛冶: 中國鑛冶工程學會會刊,第240期,2017,第105-111頁。
[45] Valverde, I.V., “Synthesis of hectorites and saponites with microwaves and their application in catalysis and composites”, 2011, Doctoral dissertation, Universitat Rovira i Virgili.
[46] R.O.C.(Taiwan) Environmental Protection Administration, Cation-Exchange Capacity of Soils (Sodium Acetate), Test Methods for Evaluating Soil Pollutants, Mthod NIEA S202.60A, February 1994.
[47] Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R., Kaufhold, S., “Quantitative phase analysis of bentonites by the Rietveld method”, Clays and Clay Minerals, vol.56, no.2, 2008, pp.272-282.
[48] Doebelin, N., Kleeberg, R., “Profex: a graphical user interface for the Rietveld refinement program BGMN”, Journal of applied crystallography, vol.48, no.5, 2015, pp.1573-1580.
[49] 劉粵惠、劉平安,X 射線繞射分析原理與應用,北京:化學工業出版社,2003,第25-42頁。
[50] Charles, B., Fredeen, J.K., “Concepts, instrumentation and techniques in inductively coupled plasma optical emission spectrometry”, Perkin Elmer Corporation, 1997.
[51] 樂盟科技有限公,感應耦合電漿發射光譜儀 iCAP 6000 Series 操作步驟, http://www.dem.cyut.edu.tw/files/act/21_af663993.pdf。
[52] Kloprogge, J.T., “Characterization of Mg-saponites synthesized from gels containing amounts of Na+, K+, Rb+, Ca2+, Ba2+, or Ce4+ equivalent to the CEC of saponite”, Clays and Clay Minerals, vol.42, 1994, pp.18-22.
[53] Vicente, I., Salagre, P., Cesteros, Y, Guirado, F., Medina, F., Sueiras, J.E., “Fast microwave synthesis of hectorite”, Applied Clay Science, vol.43, no.1, 2009, pp.103-107.
[54] Nam, H.J., Ebina, T., Ishii, R., Yokota, H., Mizukami, F., “Influence of coexistent salt on hydrothermal synthesis of smectite and film-formability of the smectite”, Applied Clay Science, vol.46, no.2, 2009, pp.209-215.
[55] Vicente, I., Salagre, P., Cesteros, Y., Medina, F., Sueiras, J.E., “Microwave-assisted synthesis of saponite”, Applied Clay Science, vol.48, no.1-2, 2010, pp.26-31.
[56] Martins, M.G., Martins, D.O., de Carvalho, B.L., Mercante, L.A., Soriano, S., Andruh, M., Vieira, M., Vaz, M.G., “Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds”, Journal of Solid State Chemistry, vol.228, 2015, pp.99-104.
[57] Wang, L., Wang, A., “Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite”, Journal of Hazardous Materials, vol.160, no.1, 2008, pp.173-180.
[58] Zhou, Q., Frost, R.L., He, H., Xi, Y., “Changes in the surfaces of adsorbed para-nitrophenol on HDTMA organoclay—The XRD and TG study”, Journal of colloid and interface science, vol.307, no.1, 2007, pp.50-55.
[59] Mishra, A.K., “Bentonite: Characteristics, Uses and Implications for the Environment”, 2015, Nova Science Publishers, Incorporated.
[60] 陳力俊,材料電子顯微鏡學,台北;全華科技圖書公司,1992。
論文全文使用權限:同意授權於2018-08-08起公開