現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:利用XAS對電致變色五氧化二釩/鉬修飾五氧化二釩原子與電子結構之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Atomic and Electronic Properties of the Electorchromic V2o5/Mo-V2O5 films Determined by in-situ XAS [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:機械工程系機電整合碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:林俊彥
英文姓名:Chun-Yan Lin
研究生學號:104408094
學位類別:碩士
語文別:中文
口試日期:2018/03/30
論文頁數:73
指導教授中文名:魏大華
指導教授英文名:Da-Hua Wei
口試委員中文名:魏大華;董崇禮;陳啟亮
口試委員英文名:Da-Hua Wei;Chung-Li Dong;Chi-Liang Chen
中文關鍵詞:電致色變五氧化二釩in-situ X光吸收光譜溶膠凝膠法電化學
英文關鍵詞:ElectrochromicVanadium Oxidein-situ XASSol-gelSmart Window
論文中文摘要:近年來變色玻璃受到廣泛的關注,氧化釩(Vanadium Oxide)是個眾所皆知的變色材料,另外在變色玻璃領域中具有良好的變色效果。然而此類型的變色材料在電致變色相關機制的研究鮮少受到討論。本篇論文利用溶膠凝膠法製作出不同的薄膜,此製程方法具有大規模生產的的優勢。利用場發射掃描式電子顯微鏡和X光繞射光譜觀察薄膜厚度、形貌、晶體結構等。而光學性質則是利用紫外-可見光光譜儀來測量。電化學性質是由循環伏安法來測定。結果顯示,鉬修飾五氧化二釩比五氧化二釩具有較優異的變色效率,其原因為結構中的對稱性改變讓變色反應更有效率。原位 X 光吸收光譜用來研究原子和電子的結構,並說明電致變色轉換的機制。從研究結果顯示,氧化還原反應的速度與六配位釩結構中心原子位置的對稱性有緊密的關連,本研究中可以提供於電致變色薄膜的智慧玻璃製造過程有重要進展。
論文英文摘要:Electrochromic switching devices have attracted considerable attention because these thin films are the most promising materials for energy-saving in green building application. The vanadium oxide system is simple and inexpensive because only a single-layer film of this material is sufficient for coloration. The film thickness. morphology, and crystal structure were determined by scanning electron microscopy and x-ray diffraction. The optical property was characterized by UV-Vis spectroscopy. The electrochemical properties were determined by cyclic voltammetry. The results show that the Mo-modified V2O5 thin film exhibits better coloration rate than as-made one which can be attributable to the changes of local atomic symmetry and electronic structure. In situ/operando X-ray absorption spectroscopy was used to track the evolution of atomic and electronic structures under electrochromic coloration to elucidate the color switching mechanism. This study may provide important process for the fabrication of electrochromic films for energy-saving windows or other useful electronic devices.
論文目次:第一章 緒論​1
1.1 前言​1
1.2 研究目的​3
第二章 研究背景與原理​4
2.1 電致色變(Electrochromic)文獻與原理​4
2.1.1電致色變(Eletrochromic)元件​8
2.2 氧化釩材料特性​10
2.2.1 五氧化二釩(V2O5)簡介​11
2.3 溶膠凝膠法(Sol-Gel)​12
第三章 實驗步驟與方法​13
3.1 實驗步驟​13
3.2 五氧化二釩薄膜之製備​14
3.3 電致色變(Electrochromic)In situ裝置​16
3.4 SEM分析​17
3.5 紫外光-可見光光譜分析​20
3.6 XRD分析​22
3.8 恆電位儀​23
3.7 X光吸收光譜分析介紹​24
3.7.1 XAS分析介紹​24
3.7.2 XAS分析量測原理​27
第四章 實驗結果與討論​31
4.1電致變色五氧化二釩以及修飾五氧化二釩著色過程與褪色過程​31
4.1.1 SEM分析結果​31
4.1.2 紫外光-可見光光譜分析結果​34
4.1.3 XRD分析​38
4.1.4 電化學分析​41
​42
4.1.4 in-situ XAS 分析​44
4.2電致變色100次循環五氧化二釩以及修飾五氧化二釩著色過程與褪色過程​53
4.2.1 可見光穿透光譜分析結果​53
4.2.2 XRD分析​58
4.2.3 電化學分析​59
4.2.4 in-situ XAS 分析​61
第五章 結論​65
參考文獻​67
論文參考文獻:[1]​M. Ando, R. Chabicovsky, and M. Haruta, "Optical hydrogen sensitivity of noble metal–tungsten oxide composite films prepared by sputtering deposition," Sensors and Actuators B: Chemical, vol. 76, pp. 13-17, 2001.
[2]​C. u. Costa, C. Pinheiro, I. s. Henriques, and C. s. A. Laia, "Electrochromic properties of inkjet printed vanadium oxide gel on flexible polyethylene terephthalate/indium tin oxide electrodes," ACS applied materials & interfaces, vol. 4, pp. 5266-5275, 2012.
[3]​ 張嘉修,「生質氫能」,科學發展,433 期,2009 年1 月。
[4]​閻正剛,「能源與材料-地球未來最有潛力的新能源:氫能源」。
[5]​A. Gavrilyuk and N. Sekushin, "Electrochromism and photochromism in tungsten and molybdenum oxides," ed: Nauka, Leningrad, 1990.
[6]​J. R. Platt, "Electrochromism, a possible change of color producible in dyes by an electric field," The Journal of Chemical Physics, vol. 34, pp. 862-863, 1961.
[7]​P. M. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism: fundamentals and applications: John Wiley & Sons, 2008.
[8]​J.-i. Hamagami, Y.-s. Oh, Y. Watanabe, and M. Takata, "Preparation and characterization of an optically detectable H2 gas sensor consisting of Pd/MoO3 thin films," Sensors and Actuators B: Chemical, vol. 13, pp. 281-283, 1993.
[9]​J. Pereira-Ramos, R. Baddour, S. Bach, and N. Baffier, "Electrochemical and structural characteristics of some lithium intercalation materials synthesized via a sol-gel process: V2O5 and manganese dioxides-based compounds," Solid State Ionics, vol. 53, pp. 701-709, 1992.
[10]​K. Inumaru, T. Okuhara, M. Misono, N. Matsubayashi, H. Shimada, and A. Nishijima, "EXAFS analysis of vanadium oxide thin overlayers on silica prepared by chemical vapour deposition," Journal of the Chemical Society, Faraday Transactions, vol. 88, pp. 625-630, 1992.
[11]​S. Passerini, D. Chang, X. Chu, D. B. Le, and W. Smyrl, "Spin-coated V2O5 xerogel thin films. 1. Microstructure and morphology," Chemistry of materials, vol. 7, pp. 780-785, 1995.
[12]​M. Sahana, C. Sudakar, C. Thapa, G. Lawes, V. Naik, R. Baird, et al., "Electrochemical properties of V 2 O 5 thin films deposited by spin coating," Materials Science and Engineering: B, vol. 143, pp. 42-50, 2007.
[13]​Y. Wei, J. Zhou, J. Zheng, and C. Xu, "Improved stability of electrochromic devices using Ti-doped V2O5 film," Electrochimica Acta, vol. 166, pp. 277-284, 2015.
[14]​S. F. Cogan, N. M. Nguyen, S. J. Perrotti, and R. D. Rauh, "Optical properties of electrochromic vanadium pentoxide," Journal of applied physics, vol. 66, pp. 1333-1337, 1989.
[15]​C. Hébert, M. Willinger, D. S. Su, P. Pongratz, P. Schattschneider, and R. Schlögl, "Oxygen K-edge in vanadium oxides: simulations and experiments," The European Physical Journal B-Condensed Matter and Complex Systems, vol. 28, pp. 407-414, 2002.
[16]​Y. Ningyi, L. Jinhua, and L. Chenglu, "Valence reduction process from sol–gel V2O5 to VO2 thin films," Applied surface science, vol. 191, pp. 176-180, 2002.
[17]​X. Yang, G. Zhu, S. Wang, R. Zhang, L. Lin, W. Wu, et al., "A self-powered electrochromic device driven by a nanogenerator," Energy & Environmental Science, vol. 5, pp. 9462-9466, 2012.
[18]​Y. Fujita, K. Miyazaki, and C. Tatsuyama, "On the electrochromism of evaporated V2O5 films," Japanese journal of applied physics, vol. 24, p. 1082, 1985.
[19]​Z. Wang, J. Chen, and X. Hu, "Electrochromic properties of aqueous sol-gel derived vanadium oxide films with different thickness," Thin Solid Films, vol. 375, pp. 238-241, 2000.
[20]​K. S. Karimov, M. Saleem, M. Mahroof-Tahir, R. Akram, M. S. Chanee, and A. Niaz, "Resistive humidity sensor based on vanadium complex films," Journal of Semiconductors, vol. 35, p. 094001, 2014.
[21]​P. Liu, S.-H. Lee, C. E. Tracy, Y. Yan, and J. A. Turner, "Preparation and lithium insertion properties of mesoporous vanadium oxide," Advanced Materials, vol. 14, p. 27, 2002.
[22]​M. Willinger, N. Pinna, D. S. Su, and R. Schlögl, "Geometric and electronic structure of γ− V 2 O 5: comparison between α− V 2 O 5 and γ− V 2 O 5," Physical Review B, vol. 69, p. 155114, 2004.
[23]​中國科學院寧波工業技術研究院,材料報導,,2016
[24]​W.-L. Jang, Y.-M. Lu, C.-L. Chen, Y.-R. Lu, C.-L. Dong, P.-H. Hsieh, et al., "Local geometric and electronic structures of gasochromic VO x films," Physical Chemistry Chemical Physics, vol. 16, pp. 4699-4708, 2014.
[25]​ 孫志平、沈保羅,「光學氫敏感材料的研究進展」,材料導報,2003。
.
[26]​C. G. Granqvist, Handbook of inorganic electrochromic materials: Elsevier, 1995.
[27]​J. Mardaljevic, R. Kelly Waskett, and B. Painter, "Neutral daylight illumination with variable transmission glass: Theory and validation," Lighting Research & Technology, vol. 48, pp. 267-285, 2016.
[28]​J. M. Velazquez, C. Jaye, D. A. Fischer, and S. Banerjee, "Near edge X-ray absorption fine structure spectroscopy studies of single-crystalline V2O5 nanowire arrays," The Journal of Physical Chemistry C, vol. 113, pp. 7639-7645, 2009.
[29]​X. Chen, F. Wang, and J. Xu, "Preparation of VO2 (B) nanoflake with glycerol as reductant agent and its catalytic application in the aerobic oxidation of benzene to phenol," Topics in Catalysis, vol. 54, p. 1016, 2011.
[30]​H. P. Oliveira, C. F. Graeff, C. A. Brunello, and E. d. M. Guerra, "Electrochromic and conductivity properties: a comparative study between melanin-like/V 2 O 5· nH 2 O and polyaniline/V 2 O 5· nH 2 O hybrid materials," Journal of non-crystalline solids, vol. 273, pp. 193-197, 2000.
[31]​N. Özer, "Electrochemical properties of sol-gel deposited vanadium pentoxide films," Thin Solid Films, vol. 305, pp. 80-87, 1997.
[32]​S. Passerini, W. H. Smyrl, M. Berrettoni, R. Tossici, M. Rosolen, R. Marassi, et al., "XAS and electrochemical characterization of lithium intercalated V2O5 xerogels," Solid State Ionics, vol. 90, pp. 5-14, 1996.
[33]​L. W. Zhang, H. B. Fu, and Y. F. Zhu, "Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite‐like carbon," Advanced Functional Materials, vol. 18, pp. 2180-2189, 2008.
[34]​C. J. Brinker, "GW Scherer Sol-Gel Science," The Physics and Chemistry of Sol-Gel Processing, Academic, San Diego, CA, 1990.
[35]​B. K. Teo, "Inorganic Chemistry Concepts," ed: Berlin: Springer-Verlag, 1986.
[36]​Y.-R. Lu, T.-Z. Wu, C.-L. Chen, D.-H. Wei, J.-L. Chen, W.-C. Chou, et al., "Mechanism of electrochemical deposition and coloration of electrochromic V2O5 nano thin films: an in situ X-ray spectroscopy study," Nanoscale research letters, vol. 10, p. 387, 2015.
[37]​J. Kortright, W. Warburton, A. Bienenstock, A. Biancone, L. Incoccia, and S. Stipcich, "EXAFS and Near Edge Structure," Springer Series in Chemical Physics, vol. 27, 1983.
[38]​D. Koningsberger and R. Prins, "X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES," 1988.
[39]​Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, et al., "Solution-based fabrication of vanadium dioxide on F: SnO 2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications," Energy & Environmental Science, vol. 4, pp. 4290-4297, 2011.
[40]​C. Chen, C. Dong, Y. Ho, C. Chang, D. Wei, T. Chan, et al., "Electronic and atomic structures of gasochromic V2O5 films," EPL (Europhysics Letters), vol. 101, p. 17006, 2013.
[41]​R. Mossanek, A. Mocellin, M. Abbate, B. Searle, P. Fonseca, and E. Morikawa, "Cluster model and band structure calculations of V 2 O 5: reduced V 5+ symmetry and many-body effects," Physical Review B, vol. 77, p. 075118, 2008.
[42]​D. Maganas, M. Roemelt, M. Hävecker, A. Trunschke, A. Knop-Gericke, R. Schlögl, et al., "First principles calculations of the structure and V L-edge X-ray absorption spectra of V 2 O 5 using local pair natural orbital coupled cluster theory and spin–orbit coupled configuration interaction approaches," Physical Chemistry Chemical Physics, vol. 15, pp. 7260-7276, 2013.
[43]​C. B. Rodella and V. R. Mastelaro, "Structural characterization of the V2O5/TiO2 system obtained by the sol–gel method," Journal of Physics and Chemistry of Solids, vol. 64, pp. 833-839, 2003.
[44]​C. Cartier, A. Tranchant, M. Verdaguer, R. Messina, and H. Dexpert, "X-ray diffraction and X-ray absorption studies of the structural modifications induced by electrochemical lithium intercalation into V2O5," Electrochimica acta, vol. 35, pp. 889-898, 1990.
[45]​M. Giorgetti, M. Berrettoni, S. Passerini, and W. H. Smyrl, "Absorption of polarized X-rays by V2O5-based cathodes for lithium batteries: an application," Electrochimica acta, vol. 47, pp. 3163-3169, 2002.
[46]​M. Giorgetti, S. Passerini, W. H. Smyrl, S. Mukerjee, X. Yang, and J. McBreen, "In situ X‐Ray absorption spectroscopy characterization of V 2 O 5 xerogel cathodes upon lithium intercalation," Journal of the Electrochemical Society, vol. 146, pp. 2387-2392, 1999.
[47]​W.-L. Jang, Y.-M. Lu, Y.-R. Lu, C.-L. Chen, C.-L. Dong, W.-C. Chou, et al., "Effects of oxygen partial pressure on structural and gasochromic properties of sputtered VOx thin films," Thin Solid Films, vol. 544, pp. 448-451, 2013.
[48]​C. Zou, X. Yan, J. Han, R. Chen, and W. Gao, "Microstructures and optical properties of β-V2O5 nanorods prepared by magnetron sputtering," Journal of Physics D: Applied Physics, vol. 42, p. 145402, 2009.
[49]​C. J. Patridge, T.-L. Wu, C. Jaye, B. Ravel, E. S. Takeuchi, D. A. Fischer, et al., "Synthesis, Spectroscopic Characterization, and Observation of Massive Metal Insulator Transitions in Nanowires of a Nonstoichiometric Vanadium Oxide Bronze," Nano letters, vol. 10, pp. 2448-2453, 2010.
[50]​B. Averill and P. Eldredge, General chemistry: principles, patterns, and applications: The Saylor Foundation, 2011.
[51]​C. Zou, L. Fan, R. Chen, X. Yan, W. Yan, G. Pan, et al., "Thermally driven V 2 O 5 nanocrystal formation and the temperature-dependent electronic structure study," CrystEngComm, vol. 14, pp. 626-631, 2012.
論文全文使用權限:同意授權於2020-04-17起公開