現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以動態有限元素分析評估鞋內墊鏤空結構設計於足跟著地初期對足跟之生物力學效應 [以論文名稱查詢館藏系統]
論文英文名稱:Biomechanical Effects of the Cellular Insole Structure Design on the Foot Heel during Heel Strike – A Dynamic Finite Element Analysis [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:機械工程系機電整合碩士班
畢業學年度:106
畢業學期:第一學期
出版年度:107
中文姓名:林嬿婷
英文姓名:Yen-Ting Lin
研究生學號:104408074
學位類別:碩士
語文別:中文
口試日期:2018/01/09
論文頁數:50
指導教授中文名:陳文斌;鄧復旦
口試委員中文名:呂東武;陳文斌;汪家昌;鄧復旦;許智欽
中文關鍵詞:有限元素分析巨腔室微腔室鏤空結構
英文關鍵詞:Finite element analysisMacrochamber layersMicrochamber layersCellular structure
論文中文摘要:過高的足底壓力及足底軟組織應力為足跟痛和足底潰瘍最主要的致病因素,而傳統用於減壓的方法大多為改變鞋墊的幾何和材質,使用新興的3D列印技術可製作具有內部結構之鞋內墊。目前已有許多知名運動品牌使用此技術製作蜂巢狀鞋底但較少人去探討此蜂巢狀鞋底對足部之影響,所以本篇研究的目的在於以動態有限元素分析法模擬足跟於著地初期的運動行為,評估不同設計之鏤空結構對足跟之生物力學效應。
本研究以三種不同的幾何建立結構單元並以不同的組合方式建立了孔隙率為53.76%(Square-II)、58.08%(Cylinder-II)、60.89%(Hex-II)、65.27%(Cylinder-I)、68.04%(Square-I)及70.36%(Hex-I)共6種不同結構組成的鏤空結構,使用包含跟骨、軟組織層、巨腔室及微腔室之足跟三維六面體有限元素模型和跟骨的運動學參數模擬足跟著地初期之運動並評估不同鏤空結構設計對足跟之生物力學效應。
本研究結果顯示鏤空結構對足底壓力和軟組織應力應變之影響沒有相同的趨勢,最具足底減壓效益的組別為Cylinder-I相對於裸足的減壓比率為12.15%,軟組織應力應變降低比率最高的組別為Hex-I相對於裸足的巨腔室應力應變降低比率為11.86%和11.85%,相對於裸足的微腔室應力應變降低比率為21.77%和20.61%,此現象和2013年Ibrahim所提出的結論相同。
使用鏤空結構鞋內墊可有效降低鞋墊整體的壓縮勁度、足底壓力及軟組織的應變應力峰値,而本研究的分析及實驗流程可初步評估鞋內墊設計對足跟之生物力學效應及在後續完整鞋具設計上提供選擇合適之鏤空結構設計有個參考依據。
論文英文摘要:The main causes of heel pain and plantar ulcer are excessive plantar pressure and high plantar soft tissue stress. Although traditional methods are used to reduce the excessive pressure by changing the geometry and material of insoles, however, emerging 3D printing technology can be used for making shoe pad with various internal structures.There are many well-known sport shoe manufacturers are currently using this 3D printing technology to manufacture honeycomb soles, but few research was dedicated to explore the impact of honeycomb shoe soles on the foot, therefore, the purpose of this study was to use dynamic finite element analysis to simulate the initial heel strike movement, and to evaluate the biomechanical effects of different cellular structural insole designs on the heel tissues.
In this study, structural units were constructed in three different geometries, and the porosity was established in different combinations, a total of 6 structures consisting of different cellular structures. They are defined as: 53.76%(Square-II), 58.08% (Cylinder-II), 60.89%(Hex-II), 65.27% (Cylinder-I), 68.04%(Square-I), 70.36%(Hex-I) respectively, and we used the three-dimensional finite element model of the heel, including calcaneus, soft tissue, macrochamber and microchamber, combining with the kinematics of the calcaneus to simulate the initial heel movement during heel strike, and to evaluate the biomechanical effects of different cellular structural insole designs on the heel.
The results of this study showed that the effects of cellular structure on the plantar pressure and soft tissue stress and strain were not identical, the most effective group for plantar pressure redution is Cylinder-I, its pressure reduction ratio is 12.15% when compared with the pressure in barefoot condition, and the highest rate of stress and strain reduction in soft tissue is Hex-I, its stress and strain reduction ratios compared with barefoot for macro-chamber regions were 11.86% and 11.85%, and those ratios compared with barefoot for micro-chambers were 21.77% and 20.61% respectively, this phenomenon is the same as the conclusion proposed by Ibrahim’s research in 2013.
The cellular structure of the shoe pad can reduce the compression stiffness of the insoles, the plantar pressure, and the strain and stress peak values of the soft tissue effectively. The analysis and experimental process of this study can be used as a preliminary assessment of the biomechanical effects of cellular insole designs on the heel, and provide a reference for designing suitable cellular structure in the subsequent whole shoe design.
論文目次:摘 要 i
ABSTRACT iii
誌謝 v
目 錄 vi
表目錄 ix
圖目錄 x
第1章 緒論 1
1.1 前言 1
1.2 研究背景與文獻回顧 2
1.2.1 影響足底壓力分佈之因素 2
1.2.2 足跟於步態站立初期承受之負載 3
1.2.3 用於足底減壓之方法 4
1.2.4 3D列印製造技術之簡介與應用 7
1.2.5 以不同負載型態之有限元素法評估足部生物力學效應 9
1.3 研究目的 13
第2章 材料與方法 15
2.1 研究流程 15
2.2 足跟有限元素分析 16
2.2.1 鏤空結構設計 16
2.2.2 足跟有限元素模型 18
2.2.3 材料參數取得 20
2.2.4 材料參數設定 24
2.2.5 接觸設定與足跟初始位置 25
2.2.6 邊界條件 25
2.2.7 模型驗證與校正 27
2.3 鏤空結構壓縮測試實驗與分析驗證 27
2.3.1 結構塊壓縮有限元素分析 27
2.3.2 結構塊壓縮實驗 28
2.4 驗證 28
第3章 結果 29
3.1 鏤空結構之壓縮勁度 29
3.2 鏤空結構壓縮測試與分析結果之驗證 29
3.3 足跟模型之校正與驗證結果 30
3.4 足跟之生物力學效應 31
3.4.1 足底壓力 31
3.4.2 軟組織之壓縮應變峰値 32
3.4.3 軟組織之應力峰值 33
3.5 鞋內墊之應力分布 34
第4章 討論 36
4.1 結構壓縮有限元素分析之結果驗證 36
4.2 足跟軟組織於足跟著地期之力學效應 36
4.3 鏤空結構對足跟之生物力學效益 38
4.4 鏤空結構鞋墊耐用度初步評估 42
4.5 研究限制 43
第5章 結論 44
第6章 未來展望 45
參考文獻 46
論文參考文獻:1 A. Guiotto, Z. Sawacha, G. Guarneri, A. Avogaro, C. Cobelli, "3D finite element model of the diabetic neuropathic foot: A gait analysis driven approach." Journal of Biomechanics, vol. 47, 2014, pp. 3064–3071.
2 C.H.M. Van Schie,"A review of the biomechanics of the diabetic foot." The International Journal of Lower Extremity Wounds, vol. 4, 2005, pp. 160–170.
3 Z.T. Xiao, Y.Q. Wu, F.T. Mak, "Accumulation of loading damage and unloading reperfusion injury — Modeling of the propagation of deep tissue ulcers." Journal of Biomechanics, vol. 47, 2014, pp. 1658–1664.
4 A. Gefen, B.V. Nierop, D. L. Bader, C.W. Oomens, "Strain-time cell-death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury." Journal of Biomechanics, vol. 41, 2008, pp. 2003–2012.
5 E.C. Herrman, C.F. Knapp, J.C. Donofrio, R. Salcido, "Skin perfusion responses to surface pressure-induced ischemia: Implication for the developing pressure ulcer." Journal of Rehabilitation Research and Development, 1999, vol. 36 (2), pp. 109-120.
6 S. Loerakker, E. Manders, G. J. Strijkers, K. Nicolay, F.P.T. Baaijens, D. L. Bader, and C.W.J. Oomens, "The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading." Journal of Applied Physiology, 2011, vol. 111, pp. 1168–1177.
7 M. Ibrahim, R. E. Hilaly, M. Taher, and A. Morsy, "A pilot study to assess the effectiveness of orthotic insoles on the reduction of plantar soft tissue strain." Clinical Biomechanics, vol. 28, 2013, pp. 68–72.
8 S. Telfe, J. Woodburn, A. Collier, P.R. Cavanagh, "Virtually optimized insoles for offloading the diabetic foot: A randomized crossover study." Journal of Biomechanics, vol.60, 2017, pp. 157–161.
9 B. Berman, "3-D printing: The new industrial revolution." Business Horizons, vol. 55, 2012, pp. 155—162.
10 H.B. Menz, "Biomechanics of the Ageing Foot and Ankle: A Mini-Review "Gerontology, 2015, vol. 61, pp. 381–388.
11 R.L.-C. Kwan, Y. -P. Zheng, G.L.-Y. Cheing, "The effect of aging on the biomechanical properties of plantar soft tissues," Clinical Biomechanics, vol. 25, 2010, pp. 601–605
12 M.J. McKaya, J.N. Baldwin, P. Ferreira, M. Simic, N. Vanicek, E. Wojciechowski, A. Mudge, J. Burns, "Spatiotemporal and plantar pressure patterns of 1000 healthy individuals aged 3–101 years." Gait & Posture, vol. 58, 2017, pp. 78–87.
13 L. Hill, T.K. Gill, H.B. Menz and A.W. Taylor, "Prevalence and correlates of foot pain in a population-based study: the North West Adelaide health study." Journal of Foot and Ankle Research, 2008, 1:2.
14 M.J. Hessert, M. Vyas, J.L., K. Hu, L. A Lipsitz and V. Novak, "Foot pressure distribution during walking in young and old adults." BMC geriatrics, vol. 5.1, 2005, pp. 8.
15 P.E. Chatzistergos, R. Naemi, L. Sundar, A. Ramachandran, N. Chockalingam, "The relationship between the mechanical properties of heel-pad and common clinical measures associated with foot ulcers in patients with diabetes," Journal of Diabetes and Its Complications, vol. 28, 2014, pp. 488–493.
16 C.Y. Lin, C.C. Lin, Y.C. Chou, P.Y. Chen, and C.L. Wang, "Heel pad stiffness in plantar heel pain by shear wave elastography." Ultrasound in Med. & Biol., vol.41, 2015, pp. 2890-2898.
17 S.A. Bus, J.S. Ulbrecht, and P.R. Cavanagh, "Pressure relief and load redistribution by custom-made insoles in diabetic patients with neuropathy and foot deformity." Clinical Biomechanics 19.6: 2004; 629-638.
18 R. Suzuki, K. Ito, T. Lee, N. Ogihara, "In-vivo viscous properties of the heel pad by stress-relaxation experiment based on a spherical indentation." Medical Engineering and Physics, vol. 50, 2017, pp. 83–88.
19 G.L. Warren, R.M. Maher, and E.J. Higbie, "Temporal patterns of plantar pressures and lower-leg muscle activity during walking: effect of speed." Gait & Posture, vol. 19.1, 2004, pp. 91-100.
20 D. Rosenbaum, M. Westhues, K. Bosch, "Effect of gait speed changes on foot loading characteristics in children." Gait & Posture, vol. 38, 2013, pp. 1058-1060.
21 R.V. Deursen,"Mechanical Loading and Off-Loading of the Plantar Surface of the Diabetic Foot," Clinical Infectious Diseases, vol. 39, 2004, pp. 87–91.
22 T.L. Lin, H. M. Sheen, C.T. Chung, S.W. Yang, S.Y. Lin, H.J. Luo, C.Y. Chen, I.C. Chan, H. S. Shih and W. H. H. Sheu," The effect of removing plugs and adding arch support to foam based insoles on plantar pressures in people with diabetic peripheral neuropathy," Journal of Foot and Ankle Research, 2013, 6:29.
23 R.L. Actis, L.B. Ventura, D.J. Lott, K. E. Smith, P.K. Commean, M.K. Hastings and M.J. Mueller," Multi-plug insole design to reduce peak plantar pressure on the diabetic foot during walking." Medical & biological engineering & computing, vol. 46.4, 2008, pp. 363-371.
24 H.W. Lim, T. Cassidy, "3D Printing Technology Revolution in Future Sustainable Fashion." International Textiles & Costume Culture Congress(ITCCC), Jeonju, South Korea, 25th-26th Oct 2014.
25 J.Y. Lee, J. An, C.K. Chua, "Fundamentals and applications of 3D printing for novel materials." Applied Materials Today, vol. 7, 2017, pp. 120–133.
26 M. Davia-Aracil, J.J. Hinojo-Pérez, A. Jimeno-Morenilla, H. Mora-Mora, "3D printing of functional anatomical insoles." Computers in Industry, vol. 95, 2018, pp. 38–53.
27 W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams , C.C.L. Wang, Y.C. Shin , S. Zhang, P. D. Zavattieri, "The status, challenges, and future of additive manufacturing in engineering." Computer-Aided Design, vol. 69, 2015, pp. 65-89.
28 S. Goske, A. Erdemir, M. Petre, S. Budhabhatti, P. R. Cavanagh, "Reduction of plantar heel pressures: Insole design using finite element analysis." Journal of Biomechanics, vol. 39, 2006, pp. 2363-2370.
29 I.R. Spears, J.E. Miller-Young, J. Sharma, R.F. Ker, F.W. Smith, "The potential influence of the heel counter on internal stress during static standing: A combined finite element and positional MRI investigation." Journal of Biomechanics, vol. 40, 2007, pp. 2774-2780.
30 G. Luo, V. L. Houston, M. A. Garbarini, A. C. Beattie, C. Thongpop, "Finite element analysis of heel pad with insoles." Journal of Biomechanics, vol. 44, 2011, pp. 1559–1565.
31 M. Kardeh, T.J. Vogl, F. Huebner, K. Nelson, F. Stief, G. Silber," Dynamic material characterization of the human heel pad based on in vivo experimental tests and numerical analysis." Medical Engineering and Physics, vol.38, 2016, pp. 940–945.
32 C.C. Hsu, W. C. Tsai, C. L. Wang, S. H. Pao, Y. W. Shau, and Y. S. Chuan," Microchambers and macrochambers in heel pads: are they functionally different?," J Appl. Physiol., vol. 102, 2007, pp. 2227–2231.
33 李建軒, "不同鞋內墊材料之硬度與勁度組合對於足底壓力分佈之影響," 碩士論文, 國立台北科技大學機電整合研究所, 台北, 2011.
34 林一嘉, "前端弧形鞋底設計對於步態站立期間足底筋膜負載之影響," 碩士論文,國立台北科技大學製造科技研究所,台北,2013.
35 黃司辰, "不同蹠骨墊設計與擺放位置對於足底壓力分佈之影響," 碩士論文,國立台北科技大學製造科技研究所,台北,2014.
36 劉奕奎, "步態站立期間後足足底軟組織不同層面之應力分佈探討," 碩士論文,中原大學生物醫學工程學系,桃園,2008.
37 "ASTM D3575-14 Standard Test Methods for Flexible Cellular Materials Made From Olefin Polymers."
38 C.G. Fontanella, A. Forestiero, E.L. Carniel, A.N. Natali, "Analysis of heel pad tissues mechanics at the heel strike in bare and shod conditions." Medical Engineering & Physics, vol. 35, 2013, pp. 441– 447.
39 C.C. Hsu, W.C. Tsai, T.Y. Hsiao, F.Y. Tseng, Y.W. Shau, C.L. Wang, S.C. Lin, "Diabetic effects on microchambers and macrochambers tissue properties in human heel pads." Clinical Biomechanics, vol. 24, 2009, pp. 682–686.
40 M.M. Stephens, G. Walker, " Heel pain: an overview of its aetiology and management " Foot and Ankle Surgery, vol. 3, 1997, pp. 51–60.
41 F.T. Tang, P.C. Chen, S.C. Lin, C.K. Wu, C.K. Chen, S.P. Cheng, "Reduction of plantar pressures in leprosy patients by using custom made shoes and total contact insoles. " Clinical Neurology and Neurosurgery, vol. 129 S1, 2015, S12–S15
42 A.J. Boulton, C.A. Hardisty, R.P. Betts, C.I. Franks, R.C. Worth, J.D. Ward, T. Duckworth, "Dynamic foot pressure and other studies as diagnostic and management aids in diabetic neuropathy. " Diabetes Care, vol. 6, 1983, pp. 26-33.
43 P.W. Laing, D.I. Cogley, L. Klenerman, "Neuropathic foot ulceration treated by total contact casts." The Journal of Bone and Joint Surgery, vol. 74, 1992, pp. 133-136.
44 C.C. Hsu, C.P. Chen, S.C. Lin, W.C. Tsai, H.T. Liu, Y.C. Lin, H.J. Lee, W.P. Chen, "Determination of the augmentation effects of hyaluronic acid on different heel structures in amputated lower limbs of diabetic patients using ultrasound elastography." Ultrasound in Med. & Biol., vol. 38, 6, 2012, pp. 943–952.
論文全文使用權限:同意授權於2018-02-13起公開