現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:邊坡穩定敏感度及不確定分析-以國道三號3.1公里崩塌事件為例 [以論文名稱查詢館藏系統]
論文英文名稱:Sensitivity and Uncertainty Analyses of the Translational Slide at the Cidu Section 3.1k of Formosan Freeway [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災博士班
畢業學年度:106
畢業學期:第一學期
出版年度:107
中文姓名:鄭佳邦
英文姓名:Chia-Pang Cheng
研究生學號:101429005
學位類別:博士
語文別:中文
口試日期:2018/01/10
論文頁數:98
指導教授中文名:陳水龍
指導教授英文名:Shong-Loong Chen
口試委員中文名:卿建業;黃文昭;張哲豪;劉家男;董家鈞;陳水龍
中文關鍵詞:邊坡安全因素敏感度不確定分析凝聚力摩擦角
英文關鍵詞:slopefactor of safetysensitivityuncertaintycohesivefriction angle
論文中文摘要:傳統的邊坡穩定性分析採用極限平衡理論中的安全係數(FS)作為決定因素。如果FS大於1,則被認為是“安全的”,然而分析模型中或參數均存有變異性,其不確定因素並未被考慮。本研究以國道三號大埔順向坡邊坡失穩案例為對象,研究的目的是在考慮岩層特性和預應力變化的情況下,分析邊坡的穩定性,透過敏感度和不確定性分析評估,結果表明:地錨的預應力靈敏度明顯小於岩層內聚力(c)和岩層內摩擦角()的變化。另外,因邊坡浸水後造成岩層弱化,凝聚力c減小到6 kPa,摩擦角 減小到14°以下,將開始發生不穩定和平衡失效,邊坡安全係數FS將小於1,經不確定分析評估結果,邊坡破壞機率高達50%,而在通過地錨穩定後,破壞機率將可降低到3%以下,大大提高了邊坡的穩定性和可靠性。
論文英文摘要:The traditional slope stability analysis used the Factor of Safety (FS) from the Limit Equilibrium Theory as the determinant. If the FS was greater than 1, it was considered as “safe” and variables or parameters of uncertainty in the analysis model were not considered. The objective of research was to analyze the stability of natural slope, in consideration of characteristics of rock layers and the variability of pre-stressing force. By sensitivity and uncertainty analysis, the result showed the sensitivity for pre-stressing force of rock anchor was significantly smaller than the cohesive (c) of rock layer and the varying influence of the friction angle () in rock layers. In addition, the immersion by water at the natural slope would weaken the rock layers, in which the cohesion c was reduced to 6 kPa and the friction angle  was decreased below 14◦, and it started to show instability and failure in the balance as FS became smaller than 1. The failure rate to the slope could be as high as 50%. By stabilizing with a rock anchor, the failure rate could be reduced below 3%, greatly improving the stability and the reliability of the slope.
論文目次:目 錄

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 ...vii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與流程 3
第二章 文獻回顧 5
2.1 邊坡破壞類型 6
2.2 邊坡不穩定成因 11
2.3邊坡穩定分析方法 13
2.3.1無限長邊坡滑動 14
2.3.2側移滑動 16
2.3.3楔型塊體滑動 17
2.3.4弧形滑動 19
2.4 敏感度分析 27
2.4.1 單因素敏感度分析 29
2.5 邊坡概率理論與方法 30
2.5.1 邊坡工程的不確定性 30
2.5.2 邊坡穩定性分析常見概率分析方法 31
2.5.3參數相關係數及變異性(Correlation Coefficient & variance) 37
2.5.4 概率密度函數(Probability Density Function, PDF) 39
2.5.5 性能函數定義(Performance Function) 40
第三章 案例探討分析 41
3.1 區域地質概況 42
3.2 區域地質分佈 43
3.3 預力地錨設計與生命週期 50
3.3.1 預力地錨尺寸與配置 50
3.3.2 地錨生命週期 51
3.4 邊坡穩定設計檢核 53
3.5 可能破壞狀況推估 57
第四章 邊坡敏感度及不確定分析 58
4.1 邊坡破壞性能函數建立 58
4.2 敏感性分析 60
4.2.1 單一敏感度分析 61
4.2.2 複合敏感度分析 71
4.3 不確定分析 73
4.3.1破壞機率評估 73
4.3.2參數敏感度對於破壞機率之變化評估 80
第五章 結論與建議 83
5.1 結論 83
5.2 建議 84
參考文獻 85
附錄 92
A SCI期刊論文摘要 93
B EI期刊論文摘要 94
C 後記-生物科技利用 95
符號彙編 97
作者簡歷 98;表目錄
表2.1 山崩分類表(Varnes, 1978) 6
表2.2 土壤邊坡穩定分析方法(香港特別行政區政府土木工程署土力工程處, 1998) 13
表2.3 Bishop與Morgenstren’s簡化數(Morgenstern and Bishop 1960) 24
表2.4 相關係數ρ (c, ϕ) 38
表2.5 參數變異係數 (COV) 38
表3.1 國道三號上邊坡之地層分佈 46
表3.2岩石直接剪力試驗結果 47
表3.3 層縫泥直接剪力試驗結果 47
表3.4 地錨殘餘荷重及健全度之概略判斷標準 52
表3.5 原始設計地層參數表 54
表3.6 原始設計剖面分析檢核表 54
表3.7 地下水位上升影響分析結果 54
表4.1 單敏感度測試樣本設計表 61
表4.2 凝聚力c及摩擦角 對邊坡安全係數之敏感度分析 71
表4.3 岩層及地錨固定參數表 74
表4.4 岩層及地錨變異參數表 74
表4.5 各種概率方法安全係數(FS)評估結果 75
表4.6各種概率方法破壞機率(Pf)評估結果 76
表4.7 凝聚力c之變異性對破壞機率之敏感性測試 81;圖目錄
圖1.1 A及B 兩個具有相同平均值不同變異數之系統 2
圖1.2 研究方法與流程 4
圖2.1邊坡墜落破壞之示意圖(Highland and Bobrowsky, 2008) 7
圖2.2 邊坡傾覆翻倒破壞之示意圖(Highland and Bobrowsky, 2008) 8
圖2.3邊坡滑動破壞之示意圖(Highland and Bobrowsky, 2008) 9
圖2.4 邊坡側滑破壞之示意圖(Highland and Bobrowsky, 2008) 9
圖2.5 邊坡流動破壞之示意圖(Highland and Bobrowsky, 2008) 10
圖2.6 無限邊坡穩定分析(陳榮河, 1997) 14
圖2.7 滲流平邊面之無限邊坡 15
圖2.8 無限邊坡的穩定分析圖表(Duncan, Buchignan, &Wet, 1987) 15
圖2.9 有限邊坡之平行滑動面 16
圖2.10 側移滑動分析圖解(NAVFAC, 1982) 18
圖2.11 圓弧滑動分析 19
圖2.12 穩定因素與坡角的關係(陳榮河, 1997) 19
圖2.13 邊坡的滑動面(Terzaghi &Peck, 1967) 20
圖2.14 摩擦圓法邊坡穩定係數(Taylor, 1948) 21
圖2.15 單一切片所受作用力(Fredlund &Krahn, 1977) 21
圖2.16 Janbu簡易法之修正係數(Janbu, 1975) 26
圖2.17 物體滑動倒塌的運動條件 (a)物體處於斜面狀態 (b)滑動和倒塌的條件 28
圖2.18三個雙變量點估計方法在標準化的參數空間差異 36
圖3.1國道三號3.1公里崩塌地點航照位置圖 41
圖3.2 國道三號3.1公里崩塌災害圖 42
圖3.3 區域地質調查圖 42
圖3.4 調查區鑽孔布置及地層剖面方向示意圖 43
圖3.5 A-A地層剖面圖(交通部, 2011) 44
圖3.6 C-C地層剖面圖(交通部, 2011) 44
圖3.7 岩石直剪試驗尖峰強度及殘餘強度之摩擦角p、ϕr(乾式及濕式) 48
圖3.8 岩石直剪試驗尖峰強度下之凝聚力Cp (乾式及濕式) (交通部, 2011) 48
圖3.9 破壞層面岩石直剪試驗結果(交通部, 2011) 49
圖3.10 破壞層面岩石直剪試驗結果(續) (交通部, 2011) 49
圖3.11 層縫泥直剪試驗結果(交通部, 2011) 50
圖3.12 地錨護坡示意圖 51
圖3.13 地錨性能與使用時間之關係(改繪自日本アンカー協会, 2008) 52
圖3.14 原始設計分析剖面 55
圖3.15 A剖面地錨配置示意圖(STA3+380.00) 55
圖3.16 B剖面地錨配置示意圖(STA3+405.00) 56
圖3.17 邊坡破壞後出露之各地層情形 57
圖4.1 國三邊坡滑動斷面示意圖 59
圖4.2 國三邊坡滑動模擬示意圖 59
圖4.3 敏感度測試 =30o, c=59kPa 62
圖4.4 敏感度測試 =30o, c=10kPa 62
圖4.5 敏感度測試 =25o, c=59kPa 63
圖4.6 敏感度測試 =25o, c=10kPa 63
圖4.7 敏感度測試 =20o, c=59kPa 64
圖4.8 敏感度測試 =20o, c=10kPa 64
圖4.9敏感度測試 =15o, c=59kPa 65
圖4.10 敏感度測試=15o, c=10kPa 65
圖4.11 敏感度測試 =10o, c=59kPa 66
圖4.12 敏感度測試 =10o, c=10kPa 66
圖4.13 敏感度測試  = 30o, Cc = 29.7kPa 68
圖4.14 敏感度測試  = 25o, Cc = 24.2kPa 68
圖4.15 敏感度測試  = 20o, Cc =19.1kPa 69
圖4.16 敏感度測試  = 15o, Cc =14kPa 69
圖4.17 敏感度測試  = 10o, Cc =9kPa 70
圖4.18 、Cc 線性函數趨勢圖 70
圖4.19 凝聚力c及摩擦角 對邊坡安全係數FS之敏感度分析 72
圖4.20凝聚力c及摩擦角 對邊坡安全係數FS之3D散佈圖 72
圖4.21凝聚力c及摩擦角 對邊坡安全係數FS之等值線圖 73
圖4.22 泡水前後破壞機率(不考慮地錨作用) 77
圖4.23 泡水前後破壞機率(考慮地錨作用) 77
圖4.24 相關係數ρc之變化對破壞機率之影響 79
圖4.25 凝聚力c標準差之變異對破壞機率之敏感性測試 82
論文參考文獻:1. 日本アンカー協会. (2008). グラウンドアンカ — 維持管理マ ニュアル. 日本: 鹿島出版会.
2. 交通部. (2011). 國道3號3.1公里崩塌事件原因調查工作總結報告. 台灣.
3. 何瑞益, &李光敦. (2010). 淺層地滑發生機率之研究-以大粗坑集水區為例. 中華水土保持學報, 41(4), 285–295.
4. 李雅芬, 李德河, &紀雲曜. (2009). 機率式邊坡穩定分析方法之研究. 中國土木水利工程學刊, 21(1), 91–103.
5. 侯秉承. (2013). 認識大地工程. 財團法人中興工程科技研究發展基金會. https://doi.org/10.1017/CBO9781107415324.004
6. 紀雲曜, &李雅芬. (2012). 岩層參數變異特性對邊坡楔型破壞機率影響之研究. 中國土木水利工程學刊, 24(2), 111–119.
7. 香港特別行政區政府土木工程署土力工程處. (1998). 斜坡岩土工程手冊.
8. 酒井 俊典, 橫田 聖哉, 竹本 捋, 優藤原, &善弘常川. (2010). 小型˙輕 量メンテナンスジャッキの開發とアンカ -緊張力の面的調查 (Vol. 38).
9. 許永佳. (2002). 水壩溢流之風險分析-以翡翠水庫為例. 國立臺灣大學. 土木工程學研究所.
10. 陳則佑, 馮正一, &莊育蓁. (2011). 應用 TRIGRS 程式於邊坡破壞機率分析 - 以奧萬大地區為例. 中華水土保持學報, 42(3), 228–239.
11. 陳榮河. (1997). 邊坡破壞模式與穩定分析. 山坡地建築開發工程研討會, (臺灣營建研究院).
12. 馮正一, 張育瑄, &葉柳青. (2009). 應用點估法及決策樹輔助邊坡整治之風險分析. 水土保持學報, 41(4), 371–388.
13. 楊沛漳. (2011). 利用 Rosenblueth 點估計建立考量土壤參數不確定性之降雨引發無限邊坡破壞機率模式. 國立嘉義大學.
14. 廖偉欽. (2010). 岩石邊坡可靠度設計之探討. 國立交通大學.
15. 廖瑞堂, 吳澤雄, &陳昭維. (2011). 漫談地錨. 大地技師, (2), 40–47.
16. 劉緁玲. (2012). 數種不確定性分析方法於降雨引發坡地淺崩塌模式之比較研究. 國立交通大學.
17. 韓飛. (2008). 基于蒙特卡洛法的黃延高速公路迪坡穩定性分析. 重慶科技學院學報(自然科學版), 第10卷 第6期(1), 139–142.
18. 羅佳明, 鄭添耀, 林彥享, 蕭震洋, 魏倫瑋, 黃春銘, …林錫宏. (2011). 國道3號七堵順向坡滑動過程之動態模擬. 中華水土保持學報, 42(3), 178–183. https://doi.org/10.1007/s10346-015-0650-x
19. Ahmadabadi, M., &Poisel, R. (2015). Assessment of the application of point estimate methods in the probabilistic stability analysis of slopes. Computers and Geotechnics, 69, 540–550. https://doi.org/10.1016/j.compgeo.2015.06.016
20. Alonso, E. E. (1977). Discussion: Risk analysis of slopes and its application to slopes in Canadian sensitive clays. Géotechnique, 27(2), 254–258. https://doi.org/10.1680/geot.1977.27.2.254
21. Babanouri, N. (2017). Investigating a potential reservoir landslide and suggesting its treatment using limit-equilibrium and numerical methods, 14, 432–441. https://doi.org/10.1007/s11629-016-3898-2
22. Baecher, G. B., &Christian, J. T. (2003). Reliability and Statistics in Geotechnical Engineering. Reliability and Statistics in Geotechnical Engineering. https://doi.org/10.1198/tech.2005.s838
23. Canada Department of Energy, M. and R. (1978). Pit Slope Manual. DEMR, Ottawa, Canada.
24. Cassidy, M. J., Uzielli, M., &Lacasse, S. (2008). Probability risk assessment of landslides: A case study at Finneidfjord. Canadian Geotechnical Journal, 45(9), 1250–1267. https://doi.org/10.1139/T08-055
25. Che-Hao, C., Yeou-Koung, T., &Jinn-Chuang, Y. (1995). Evaluation of probability point estimate methods. Applied Mathematical Modelling, 19(2), 95–105. https://doi.org/10.1016/0307-904X(94)00018-2
26. Cho, S. E. (2009). Probabilistic stability analyses of slopes using the ANN-based response surface. Computers and Geotechnics, 36(5), 787–797. https://doi.org/10.1016/j.compgeo.2009.01.003
27. Duncan, J. M., Buchignan, A. L., &Wet, M.De. (1987). An Engineering Manual for Slope Stability Studies.
28. Duzgun, H. S. B., Yucemen, M. S., &Karpuz, C. (2003). A methodology for reliability-based design of rock slopes. Rock Mechanics and Rock Engineering, 36(2), 95–120. https://doi.org/10.1007/s00603-002-0034-0
29. El-Ramly, H., Morgenstern, N. R., &Cruden, D. M. (2006). Lodalen slide: a probabilistic assessment. Canadian Geotechnical Journal, 43(9), 956–968. https://doi.org/10.1139/t06-050
30. Fenton, G. A., &Griffith, D. V. (2010). Reliability-Based Geotechnical Engineering. GeoFlorida 2010: Advances in Analysis, Modeling & Design (GSP 199) © 2010 ASCE, (199 GSP), 14–52.
31. Fredlund, D. G., &Krahn, J. (1977). Comparison of slope stability methods of analysis. Canadian Geotechnical Journal. https://doi.org/10.1139/t77-045
32. Genske, D. D., &Walz, B. (1991). Probabilistic assessment of the stability of rock slopes. Structural Safety, 9(3), 179–195. https://doi.org/10.1016/0167-4730(91)90042-8
33. Greco, V. R. (2016). Variability and Correlation of Strength Parameters Inferred from Direct Shear Tests. Geotechnical and Geological Engineering, 34(2), 585–603. https://doi.org/10.1007/s10706-015-9968-3
34. Griffiths, D.V., &Fenton, G. a. (2004). Probabilistic Slope Stability Analysis by Finite Elements. Journal of Geotechnical and Geoenvironmental Engineering, 130(5), 507–518. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507)
35. Harr, M. E. (1987). Reliability-Based Design in Civil Engineering. New York, N.Y.: Mcgraw-Hill(TX).
36. Harr, M. E. (1989). Probabilistic estimates for multivariate analyses. Applied Mathematical Modelling. https://doi.org/10.1016/0307-904X(89)90075-9
37. Highland, L. M., &Bobrowsky, P. (2008). The Landslide Handbook — A Guide to Understanding Landslides. U.S. Geological Survey Circular 1325. U.S. Geological Survey, Reston, Virginia. https://doi.org/Circular 1325
38. Husein Malkawi, A. I., Hassan, W. F., &Abdulla, F. A. (2000). Uncertainty and reliability analysis applied to slope stability. Structural Safety, 22(2), 161–187.
39. Iovine, G. G. R., Greco, R., Gariano, S. L., Pellegrino, A. D., &Terranova, O. G. (2014). Shallow-landslide susceptibility in the Costa Viola with considerations on the role of causal factors, 73(1), 111–136. https://doi.org/10.1007/s11069-014-1129-0
40. Jaiswal, P., Westen, C. J.Van, &Jetten, V. (2010). Quantitative landslide hazard assessment along a transportation corridor in southern India. Engineering Geology, 116(3–4), 236–250. https://doi.org/10.1016/j.enggeo.2010.09.005
41. Janbu, N. (1975). Slope stability computations: In Embankment-dam Engineering. (R. C. H. and J. S.Poulos, Ed.), John Wiley & Sons (Vol. 12). John Wiley & Sons.
42. Jiang, S. H., Li, D. Q., Cao, Z. J., Zhou, C. B., &Phoon, K. K. (2014). Efficient System Reliability Analysis of Slope Stability in Spatially Variable Soils Using Monte Carlo Simulation. Journal of Geotechnical and Geoenvironmental Engineering, 141(2), 1–13. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001227.
43. Kaur, A., &Sharma, R. K. (2016). SLOPE STABILITY ANALYSIS TECHNIQUES: A REVIEW. International Journal of Engineering Applied Sciences and Technology, 1(4), 24552143.
44. Leung, C. F., &Quek, S. T. (1995). Probabilistic stability analysis of excavations in jointed rock. Canadian Geotechnical Journal, 32(3), 397–407. https://doi.org/10.1139/t95-044
45. Li, C., Wang, W., &Wang, S. (2012). Maximum-entropy method for evaluating the slope stability of earth dams. Entropy, 14(10), 1864–1876. https://doi.org/10.3390/e14101864
46. Li, D. Q., Xiao, T., Cao, Z. J., Zhou, C. B., &Zhang, L. M. (2016). Enhancement of random finite element method in reliability analysis and risk assessment of soil slopes using Subset Simulation. Landslides, 13(2), 293–303. https://doi.org/10.1007/s10346-015-0569-2
47. Li, D., Zhou, C., Lu, W., &Jiang, Q. (2009). A system reliability approach for evaluating stability of rock wedges with correlated failure modes. Computers and Geotechnics, 36(8), 1298–1307. https://doi.org/10.1016/j.compgeo.2009.05.013
48. Li, H.-Z., &Low, B. K. (2010). Reliability analysis of circular tunnel under hydrostatic stress field. Computers and Geotechnics, 37(1–2), 50–58. https://doi.org/10.1016/j.compgeo.2009.07.005
49. Li, K. S., &Lumb, P. (1987a). Probabilistic design of slopes. Canadian Geotechnical Journal, 24, 520–535. https://doi.org/10.1139/t87-068
50. Li, K. S., &Lumb, P. (1987b). Probabilistic design of slopes. Canadian Geotechnical Journal, 24(1974), 520–535. https://doi.org/10.1139/t87-068
51. Low, B. K. (1997a). Reliability Analysis of Rock Wedges. Journal of Geotechnical and Geoenvironmental Engineering, 123(6), 498–505. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(498)
52. Low, B. K. (1997b). Reliability Analysis of Rock Wedges. Journal of Geotechnical and Geoenvironmental Engineering, 123(6), 498–505. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(498)
53. Matsuo, M., &KURODA, K. (1974). PROBABILISTIC APPROACH TO DESIGN OF EMBANKMENTS. SOILS AND FOUNDATIONS, 14(2), 1–17. Retrieved from http://trid.trb.org/view.aspx?id=40028
54. Mbarka, S., Baroth, J., Lifti, M., Hassis, H., &Darve, F. (2010). Reliability analyses of slope stability. Homogeneous slope with circular failure. European Journal of Environmental and Civil Engineering, 14(10), 1227–1257. https://doi.org/10.3166/ejece.14.1227-1257
55. Metropolis, N., &Ulam, S. (1949). The Monte Carlo method. Journal of the American Statistical Association, 44(247), 335–341. https://doi.org/10.1080/01621459.1949.10483310
56. Morgenstern, N., &Bishop, a. W. (1960). Stability Coefficients for Earth Slopes. Géotechnique. https://doi.org/10.1680/geot.1960.10.4.129
57. NAVFAC. (1982). Design Manual, Soil Mechanics, Foundations and Earth Structures, DM-7. Naval Facilities Engineering Command, Alexandria, VA.
58. Peñalba, R. F., Luo, Z., &Juang, C. H. (2009). Framework for probabilistic assessment of landslide: A case study of El Berrinche. Environmental Earth Sciences. https://doi.org/10.1007/s12665-009-0046-0
59. Phoon, K.-K., &Kulhawy, F. H. (1999). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36(4), 612–624. https://doi.org/10.1139/t99-038
60. Phoon, K. K. (2004). Towards reliability-based design for geotechnical engineering. KOREAN GEOTECHNICAL SOCIFTY, 2004(July), 1–23.
61. Quek, S. T., &Leung, C. F. (1995). Reliability-based stability analysis of rock excavations. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(6), 617–620. https://doi.org/10.1016/0148-9062(95)00017-B
62. Refice, A., &Capolongo, D. (2002). Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Computers and Geosciences, 28(6), 735–749. https://doi.org/10.1016/S0098-3004(01)00104-2
63. Ru, Z.-L., &Li, M.-T. (2006). Reliability analysis of slope stability by parallel stochastic FEM. Yantu Lixue/Rock and Soil Mechanics, 27(SUPPL.), 751–754.
64. Schmidt, J., &Dikau, R. (2004). Modeling historical climate variability and slope stability. Geomorphology, 60(3–4), 433–447. https://doi.org/10.1016/j.geomorph.2003.11.001
65. Silva, F., Lambe, T. W., &Marr, W. A. (2008). Probability and Risk of Slope Failure. Journal of Geotechnical and Geoenvironmental Engineering, 134(12), 1691–1699. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:12(1691)
66. Sivakumar Babu, G. L., &Mukesh, M. D. (2003). Risk analysis of landslides - A case study. Geotechnical and Geological Engineering, 21(2), 113–127. https://doi.org/10.1023/A:1023525002893
67. Srivastava, A., &Babu, G. L. S. (2009). Effect of soil variability on the bearing capacity of clay and in slope stability problems. Engineering Geology, 108(1–2), 142–152. https://doi.org/10.1016/j.enggeo.2009.06.023
68. Taylor. (1948). Fundamentals of Soil Mechanics. Soil Science. https://doi.org/10.1097/00010694-194808000-00008
69. Terzaghi, K., &Peck, R. B. (1967). Soil mechanics in engineering practice (2nd Editio). John Wiley.
70. Turner, A. K., &Schuster, R. L. (1996). Landslides— Investigation and mitigation: National Research Council, Transportation Research Board Special Report 247. National Academy Press, Washington.
71. Varnes, D. J. (1978). Slope Movement Types and Processes. Transportation Research Board Special Report, (176), 11–33. https://doi.org/In Special report 176: Landslides: Analysis and Control, Transportation Research Board, Washington, D.C.
72. Wang, L. (2013). Probabilistic Back Analysis of Geotechnical Systems. Clemson University.
73. Wang, L., Hwang, J. H., Luo, Z., Juang, C. H., &Xiao, J. (2013). Probabilistic back analysis of slope failure - A case study in Taiwan. Computers and Geotechnics, 51(3), 12–23. https://doi.org/10.1016/j.compgeo.2013.01.008
74. Wang, W., Li, C. Q., &Wang, S. (2011). Slope Instability Risk Analysis in Earth Dams Considering Uncertain Factors. Applied Mechanics and Materials, 117–119, 1475–1478. https://doi.org/10.4028/www.scientific.net/AMM.117-119.1475
75. Wang, Y., Cao, Z., &Au, S.-K. (2011). Practical reliability analysis of slope stability by advanced Monte Carlo simulations in a spreadsheet. Canadian Geotechnical Journal, 48(1), 162–172. https://doi.org/10.1139/T10-044
76. Wu, T. H., Zhou, S. Z., &Gale, S. M. (2007). Embankment on sludge: predicted and observed performances. Canadian Geotechnical Journal, 44(5), 545–563. https://doi.org/10.1139/t07-004
77. Wu, X. Z. (2013). Probabilistic slope stability analysis by a copula-based sampling method. Computational Geosciences, 17(5), 739–755. https://doi.org/10.1007/s10596-013-9353-3
78. Wu, X. Z. (2015). Assessing the correlated performance functions of an engineering system via probabilistic analysis. Structural Safety, 52(PA), 10–19. https://doi.org/10.1016/j.strusafe.2014.07.004
79. Wu, X. Z. (2016). Implementing statistical fitting and reliability analysis for geotechnical engineering problems in R. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 11(2), 173–188. https://doi.org/10.1080/17499518.2016.1201577
80. Xiao, Z., Huang, J., Wang, Y., &Xu, C. (2014). Random Reliability Analysis of Gravity Retaining Wall Structural System, (Icmce), 199–204.
81. Xue, J.-F., &Gavin, K. (2007). Simultaneous Determination of Critical Slip Surface and Reliability Index for Slopes. Journal of Geotechnical and Geoenvironmental Engineering, 133(7), 878–886. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(878)
82. Yarahmadi Bafghi, A. R., &Verdel, T. (2005). Sarma-based key-group method for rock slope reliability analyses. International Journal for Numerical and Analytical Methods in Geomechanics, 29(10), 1019–1043. https://doi.org/10.1002/nag.447
83. Yeh, K. C., &Tung, Y. K. (1993). Uncertainty and sensitivity analyses of pit-migration model. Journal of Hydraulic Engineering, 119(2), 262–283. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(262)
84. Yucemen, M. S., Tang, W. H., &Ang, A. .-S. (1973). A probabilistic study of safety and design of earth slopes, (July 1973), 1–204.
85. Zhang, J., Huang, H. W., Juang, C. H., &Li, D. Q. (2013). Extension of Hassan and Wolff method for system reliability analysis of soil slopes. Engineering Geology, 160. https://doi.org/10.1016/j.enggeo.2013.03.029
86. Zhang, J., Zhang, L. M., &Tang, W. H. (2009). Bayesian Framework for Characterizing Geotechnical Model Uncertainty. Journal of Geotechnical and Geoenvironmental Engineering, 135(7), 932–940. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000018
87. Zhang, L. L., Zhang, L. M., &Tang, W. H. (2005). Rainfall-induced slope failure considering variability of soil properties. Géotechnique, 55(2), 183–188. https://doi.org/10.1680/geot.55.2.183.59525
論文全文使用權限:同意授權於2018-02-05起公開