現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:具低頻漣波抑制之主動式濾波器 於單相市電併聯系統應用 [以論文名稱查詢館藏系統]
論文英文名稱:An Active Filter with Low-Frequency Ripple Reduction for Single-Phase Grid-Connected System [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:車輛工程系
畢業學年度:106
畢業學期:第一學期
出版年度:106
中文姓名:林詮盛
英文姓名:Quan-Sheng Lin
研究生學號:104448015
學位類別:碩士
語文別:中文
口試日期:2017/07/31
論文頁數:92
指導教授中文名:賴慶明
口試委員中文名:李榮全;阮昱霖;楊銘基
中文關鍵詞:二倍線頻漣波主動濾波器單相市電直/交流轉換系統
英文關鍵詞:double line frequency rippleactive filtersingle-phase DC/AC system
論文中文摘要:本文旨在提出一具有新型控制策略之主動式濾波器,透過控制分散式能源裝置之輸出電流,間接調控濾波器之輸出電流以簡化控制迴路設計,其可應用於降低單相市電直/交流轉換系統所固有之二倍線頻瞬時功率問題,進而使分散式能源裝置之輸出維持低漣波特性,使得壽命得以延長。本文內容包括探討二倍線頻漣波的產生原因,以及如何經由主動式濾波器減緩二倍線頻漣波,同時亦完成電路模擬、穩態分析、小信號模型推導與控制迴路設計以及硬體實作。最後,本文所提主動式濾波器實際用於規格為輸入電壓36V、輸出交流電壓110Vrms/輸出額定功率500W之單相市電併聯系統。最後,經由系統模擬與實作驗證,可以得知加入本文所提主動式濾波器之後可以使單相市電併聯發電系統於穩態、暫態響應操作下,具有直流端良好之低漣波特性。
論文英文摘要:The objective of this dissertation is to propose a new control strategy for the active filter. It controls the output current of the distributed energy devices for simplifying the control loop design of the active filter, and therefore the output current of the filter can be adjustable indirectly. The proposed control strategy can be used to reduce the instantaneous power phenomenon with double line frequency of the single-phase DC/AC conversion system. Thus, the low output ripple and long-life cycle characteristics of distributed energy devices can be achieved. This dissertation covers the root causes of the double line-frequency ripple and how to reduce that with the proposed active filter. Besides, the circuit simulation, steady-state analysis, small-signal model derivation, control loop design, and hardware implementation are made. Finally, the proposed active filter is built for single-phase grid-connected system with input voltage of 36V and output AC voltage of 110Vrms / output rated power of 500W. According to the simulation results and experimental verifications for the proposed active filter, the low ripple characteristics of the DC side for the single-phase grid-connected system can be achieved.
論文目次:目錄

摘 要 ii
ABSTRACT iii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 被動式電容濾波器 3
1.2.2 電感與電容串聯諧振電路 4
1.3 本論文之貢獻 6
1.4 本論文之內容概述 7
第二章 用於低頻漣波抑制之主動式濾波器控制策略 8
2.1 前言 8
2.2 採用主動式濾波器之輸入電流回授法 8
2.2.1 比例-積分控制器介紹 9
2.2.2 比例-諧振控制器介紹 10
2.3 採用直/交流轉換系統之輸出電流回授法 11
2.3.1 低通濾波器介紹 11
2.3.2 帶通濾波器介紹 12
2.4 本章總結 14
第三章 主動式濾波器分析與設計 15
3.1 兩倍線頻功率潮流探討 15
3.2 主動式濾波器原理分析 17
3.3 主動式濾波器功率級應力分析 21
第四章 主動式濾波器動態模型建立與控制迴路設計 23
4.1 前言 23
4.2 小信號動態模型推導 24
4.3 控制迴路設計 31
4.3.1 電流控制迴路設計 33
4.3.2 電壓控制迴路設計 35
第五章 控制迴路數位化實現 41
5.1 前言 41
5.2 控制器數位化 43
5.3 同步取樣策略 44
5.4 對稱式數位脈寬調變產生器 45
5.5 控制器參數數值量化分析 46
5.6 軟體規劃及程式流程 50
第六章 實驗硬體設計與模擬及實驗結果 53
6.1 前言 53
6.2 實驗平台說明 53
6.3 主動式濾波器之硬體實現與設計 57
6.3.1 功率級元件設計 58
6.3.2 開關驅動與回授電路設計 63
6.3.3 硬體電路實現 64
6.4 模擬與實驗結果 66
6.4.1 穩態響應模擬與實驗結果 68
6.4.2 暫態響應模擬與實驗結果 74
6.4.3 單相市電併聯系統之實驗結果 76
6.5 系統效率估算與測量 77
第七章 結論與未來展望 83
7.1 結論 83
7.2 未來研究方向 84
參考文獻 85
附錄 89
一、 線路規劃圖 89
二、 PCB電路佈局圖 90
符號彙編 92
論文參考文獻:參考文獻

[1] C. T. Pan, C. M. Lai, and M. C. Cheng, “A Novel Integrated Single-Phase Inverter with an Auxiliary Step-Up Circuit for Low-Voltage Alternative Energy Source Applications,” IEEE Transactions on Power Electronics, vol. 25, no. 9, pp. 2234-2241, Sep. 2010.
[2] Y. H. Liao, C. M. Lai, “Newly-Constructed Simplified Single-Phase Multistring Multilevel Inverter Topology for Distributed Energy Resources,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2386-2392, Sep. 2011.
[3] C. T. Pan, M. C. Cheng, and C. M. Lai, “A Novel Integrated DC/AC Converter with High Voltage Gain Capability for Distributed Energy Resource Systems,” IEEE Transactions on Power Electronics, vol. 27, no. 5, pp. 2385-2395, May. 2012.
[4] C. M. Lai, H. P. Yu, and W. C. Liu, “A Single-Stage Grid-Connected Microinverter with Unity-Power-Factor for Photovoltaic Applications,” Journal of Technology, vol. 30, no. 1, pp. 25-31, Mar. 2015.
[5] C. Liu and J. S. Lai, “Low Frequency Current Ripple Reduction Technique with Active Control in a Fuel Cell Power System With Inverter Load,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1429-1436, Jul. 2007.
[6] W. Choi, P. N. Enjeti, and J. W. Howze, “Development of an Equivalent Circuit Model of a Fuel Cell to Evaluate the Effects of Inverter Ripple Current,” IEEE Applied Power Electronics Conference and Exposition, pp. 355-361, Feb. 2004.
[7] G. Fontes, C. Turpin, R. Saisset, T. Meynard, and S. Astier, “Interactions between Fuel Cells and Power Converters Influence of Current Harmonics on a Fuel Cell Stack,” IEEE Power Electronics Specialists Conference, vol. 22, no. 2, pp. 4729-4735, Mar. 2004.
[8] C. M. Lai, “Single-Stage Grid-Connected PV Micro-Inverter Based on Interleaved Flyback Converter Topology,” IEEE International Symposium on Computer, Consumer and Control, pp. 187-190, Jun. 2014.
[9] Y. M. Chen, Y. C. Liu, and F. Y. Wu, “Multi-Input Converter with Power Factor Correction, Maximum Power Point Tracking, and Ripple-Free Input Currents,” IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 631-639, May 2004.

[10] R. J. Wai and C. Y. Lin, “Active Low-Frequency Ripple control for Clean-Energy Power Conditioning Mechanism,” IEEE Transactions on Industrial Electronics, vol. 57, no. 11, pp. 3780-3792, Nov. 2010.
[11] R. J. Wai and C. Y. Lin, “Dual Active Low-Frequency Ripple Control for Clean-Energy Power-Conditioning Mechanism,” IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 5172-5185, Nov. 2011.
[12] X. Liu and H. Li, “An Electrolytic-Capacitor-Free Single-Phase High-Power Fuel Cell Converter With Direct Double-Frequency Ripple Current Control,” IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 297-308, Jan. 2015.
[13] Q. C. Zhong, W. L. Ming, X. Cao, and M. Krstic, “Control of Ripple Eliminators to Improve the Power Quality of DC Systems and Reduce the Usage of Electrolytic Capacitors,” IEEE Access, vol. 4, pp. 2177-2187, May 2016.
[14] T. Shimizu and S. Suzuki, “A Single-Phase Grid-Connected Inverter with Power Decoupling,” IEEE Power Electronics Conference, pp. 2918-2923, Jun. 2010.
[15] C. Y. Liao, Y. M. Chen, and W. H. Lin, “Forward-Type Micro-Inverter with Power Decoupling,” IEEE Applied Power Electronics Conference and Exposition, pp. 2852-2857, Mar. 2013.
[16] Y. M. Chen and C. Y. Liao, “Three-Port Flyback-Type Single-Phase Micro-Inverter with Active Power Decoupling Circuit,” IEEE International Conference on Energy Conversion Congress and Exposition, pp. 501-506, Sep. 2011.
[17] G. C. Christidis, A. Ch. Kyritsis and N. P. Papanikolaou, and E. C. Tatakis, “Investigation of Parallel Active Filters’ Limitations for Power Decoupling on Single-Stage/Single-Phase Microinverters,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 1096-1106, Sep. 2016.
[18] S. K. Mazumder and K. Haynes, “Analysis for the effect of inverter ripple current on fuel cell operating condition,” Transactions-american society of mechanical engineers journal of fluids engineering, vol. 125, no. 3, pp.576-585, Jun. 2003.
[19] S. K. Mazumder, “Solid-oxide-fuel-cell performance and durability: resolution of the effects of power-conditioning systems and application loads,” IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1263-1278, Sep. 2004.
[20] C. Liu and J. S. Lai, “Low frequency current ripple reduction technique with active control in a fuel cell power system with inverter load,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1429-1436, Jul. 2007.
[21] K. Harada and S. Nonaka, “FFT analysis of the composite PWM voltage source inverter,” IEEE Power Conversion Conference, pp. 1257-1261. Apr. 2002.
[22] Y. J. Song, S. K. Chung and P. N. Enjeti, “A current-fed HF link direct DC/AC converter with active harmonic filter for fuel cell power systems,” IEEE Industry Applications Conference, pp. 123-128. Oct. 2004.
[23] W. Shireen and H. Nene, “Active filtering of input ripple current to obtain efficient and reliable power from fuel cell sources,” IEEE Telecommunications Energy Conference, pp. 1-6. Sep. 2006.
[24] G. C. Christidis and A. C. Kyritsis, “Investigation of Parallel Active Filters’ Limitations for Power Decoupling on Single-Stage/Single-Phase Microinverters,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 1096-1106, Apr. 2016.
[25] J. Wang, B. Ji, X. Lu and X. Deng, “Steady-state and dynamic input current low-frequency ripple evaluation and reduction in two-stage single-phase inverters with back current gain model,” IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4247-4260, Nov. 2014.
[26] X. Zhao, L. Zhang, R. Born and J. S. Lai, “Solution of input double-line frequency ripple rejection for high-efficiency high-power density string inverter in photovoltaic application,” IEEE Applied Power Electronics Conference and Exposition, pp. 1148-1154, Mar. 2016.
[27] Q. C. Zhong, W. L. Ming and X. Cao, “Control of ripple eliminators to improve the power quality of DC systems and reduce the usage of electrolytic capacitors,” IEEE Access, vol. 4, pp. 2177-2187, May. 2016.
[28] D. Zammit, C. S. Staines and M. Apap, “Comparison between PI and PR current controllers in grid connected PV inverters,” International Journal of Electronics and Electrical Engineering, vol. 8, no. 2, pp. 221-226, Jan. 2014.
[29] K. H. Ang, G. Chong, Y. Li, “PID control system analysis, design, and technology,” IEEE Transactions on Industry Applications, vol. 13, no. 4, pp. 559-576, Apr. 2005.
[30] S. Parvez and Z. Gao, “A wavelet-based multiresolution PID controller,” IEEE Transactions on Industry Applications, vol. 14, no. 2, pp. 537-543, Jul. 2005.
[31] 沈金鐘,PID控制器:理論、調整與實現,台中:滄海書局股份有限公司,2001年。


[32] L. Palma, “An active power filter for low frequency ripple current reduction in fuel cell applications,” IEEE Power Electronics Electrical Drives Automation and Motion, pp. 1308-1313, Jun. 2010.
[33] Texas Instruments TMS320x2802x, Piccolo Microcontrollers.
[34] Texas Instruments TMS320x2802x, 2803x Piccolo Enhanced Pluse Width Modulator (ePWM) Module Reference Guide.
[35] C. M. Lai, M. J. Yang and W. C. Liu, “Parallel-operated single-stage flyback-type single-phase solar micro-inverter,” IEEE Intelligent Green Building and Smart Grid, pp. 1-5, Apr. 2014.
[36] C. M. Lai and Y. J. Lin, “Development of a modular single-stage grid-connected fuel-cell inverter system with power management and remote monitoring interface,” IEEE Future Energy Electronics Conference and ECCE Asia, pp. 2094-2099, Jun. 2017.
[37] 賴慶明、楊銘基,「一商用化高效率單級太陽能微逆變器之研製」,電力電子雙月刊,第十二卷,第五期,2014,第11-17頁。
[38] Fairchild Semiconductors, FDA59N30, Power MOSFET, 2014.
[39] 吳義利,切換式電源轉換器,台北:文笙書局股份有限公司,2015年。
論文全文使用權限:同意授權於2020-10-24起公開