現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:紫外光固化石墨烯複合封裝膠材水氣滲透之研究 [以論文名稱查詢館藏系統]
論文英文名稱:The study of UV-Cured Graphene Polymer Sealants of Water Vapor Permeability [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程與生物科技系生化與生醫工程碩士班
畢業學年度:106
畢業學期:第一學期
出版年度:106
中文姓名:李依儒
英文姓名:LEE,YI-RU
研究生學號:104738012
學位類別:碩士
語文別:中文
口試日期:2017/06/19
論文頁數:63
指導教授中文名:楊重光
口試委員中文名:黃聲東;戴子安
中文關鍵詞:石墨烯奈米填料封裝膠水氣滲透率紫外光固化溶膠凝膠法
英文關鍵詞:GrapheneNano-fillerWVTRUV curable resinSol-Gel method
論文中文摘要:輕、薄且可撓式之軟性電子產品為新一代電子產品之趨勢,這些產品所具有的特色,已是傳統封裝(玻璃)方式無法再繼續發展,可撓式阻水氣薄膜也成為近期熱門研究之一。除了阻水氣薄膜本身需具有高阻水氣滲透之能力外,其封裝膠材也須有一定的阻水氣性質能力。
本論文為研究以溶膠-凝膠法製備紫外光膠膠底之樹脂,再加入奈米填料,探討其封裝於軟性基材之水氣滲透率影響及應用。第一部分:將矽烷耦合劑 3-(Trimethoxysilyl) propyl methacrylate (MPS) 水解形成高分子作為寡聚物與稀釋單體三羥甲基丙烷三丙烯酸酯(TMPTA) 調配成不同比例,找出最適合之配方,使其能在PET薄膜上附著。第二部分:找出最優之膠底後,加入不同方法製備之石墨烯奈米材料,以不同比例 (0.001%, 0.002%, 0.01%),並加入光起始劑,組成紫外光固化石墨烯複合膠材,利用150-200mW/cm2紫外光機進行光固化反應,製成附著於PET之膠膜 (1mm, 500m, 250m),用水氣滲透測量儀(Water vapor permeation instrument, MOCON) 測其水氣滲透率( WVTR)。最好之膠材WVTR可<10-2g/m2˙day。樣品之黃化經測試後無黃化現象。實驗樣品之百格測試均百格測試均5B,鉛筆硬度5H-8H。 再添加石墨烯填料後,膠材之Tg提升至180oC。
論文英文摘要:Light, thin and flexible soft electronic products are the trend for new generation. The traditional packaging (glass) is no being developed compare to the characteristics of these products. Recently, the water vapor transmission resistance became the popular research. In addition to the gas barrier film must have the ability of a low water vapor transmission rate (WVTR), the encapsulation of the material must also have the certain ability of the low WVTR.
In this paper, the UV curing resin is prepared by sol-gel method, and then discussed the influence of the nano-filler for water vapor transmission.
The first part: Using silane coupling agent “3- (Trimethoxysilyl) propyl methacrylate (MPS)” hydrolyze to form a polymer acrylic resin as oligomer and trimethylolpropane triacrylate (TMPTA) as monomer in different proportions to find the most suitable formula.
In the second part, add the different “Graphene” materials at different ratio (0.01%, 0.002%, 0.01%) and photoinitiator to form organic / inorganic UV-curable graphene resin. It adhered to PET film and cured by using a ultraviolet light machine at 150-200 mW / cm2. The water vapor transmission rate (WVTR) measured by “Water vapor permeation instrument, MOCON”, the best material’s WVTR can be <10-2g / m2 day. The samples were not yellowed after one week of sun test. Adhesive test all samples are 5B. Pencil hardness test: 5H-8H. The sealant’s Tg up to 180oC after add graphene filler.
論文目次:摘要 i
Abstract ii
誌 謝 iii
圖目錄 vi
表目錄 vii
一、緒論 8
1.1 前言 8
1-2 研究動機 9
二、文獻回顧 11
2-1奈米複合材料 11
2-1-1 奈米填料 11
2-1-2 高分子奈米複合材料之製程 11
2-1-3石墨烯 13
2-1-4二氧化矽 16
2-2 紫外光固化材料之研究背景 16
2-2-1紫外光固化材料之發展 17
2-2-2紫外固化膠之優缺點 18
2-2-3紫外光固化之機制與組成 20
2-2-4紫外光固化材料之應用 28
2-3 溶膠-凝膠法 29
2-3-1溶膠-凝膠法原理 30
2-3-2 pH值及水含量對溶膠-凝膠法之影響 31
2-3-3 溶膠-凝膠法之優缺點 32
2-4阻水氣滲透之機制 32
2-4-1 水氣滲透理論 32
2-4-2 塑膠基材特性與其水氣滲透機制 34
三、實驗流程與分析儀器介紹 36
3-1 實驗藥品 36
3-2 實驗儀器及設備 36
3-3 實驗 38
3-3-1分子設計 38
3-3-2光固化膠底製備 39
3-3-3 光固化石墨烯複合膠材製備 39
3-4 樣品分析及測試 41
3-4-1 WVTR 之量測 41
3-4-2 奈米填料分散分析 42
3-4-3 膠材附著能力及硬度測試 43
3-4-4 膠材耐候性測試 45
3-4-5膠材熱性質分析 46
四、結果與討論 48
4.1 膠材配方 48
4.1.1 寡聚物與單體比例 48
4.1.2 光起始劑含量對固化之影響 48
4.1.3 奈米填料之添加 48
4.2水氣滲透率(WVTR) 49
4.2.1 WVTR之結果 49
4.2.2 奈米填料之形貌對WVTR之影響 50
4.3 填料粒徑分析結果 54
4.4 耐候性測試 55
4.5 膠材附著性及硬度測試結果 57
4.4 熱性質測試 58
五、結論 59
Reference 61
論文參考文獻:1. 林研詩, 軟性電子之市場發展現況與趨勢, in 工業材料雜誌. 2015: 工研院.
2. 廖建勛, 奈米高分子複合材料. 1997.
3. Gleiter, H., NANOCRYSTALLINE MATERIALS. 1989.
4. Strawhecker, K.E. and E. Manias, Structure and Properties of Poly(vinyl alcohol)/Na+ Montmorillonite Nanocomposites. Chemistry of Materials, 2000. 12(10): p. 2943-2949.
5. Schadler, L.S., Polymer-Based and Polymer-Filled Nanocomposites, in Nanocomposite Science and Technology. 2004, Wiley-VCH Verlag GmbH & Co. KGaA. p. 77-153.
6. Picu, C. and P. Keblinski, Modeling of Nanocomposites, in Nanocomposite Science and Technology. 2004, Wiley-VCH Verlag GmbH & Co. KGaA. p. 215-222.
7. Braun, P.V., Natural Nanobiocomposites, Biomimetic Nanocomposites, and Biologically Inspired Nanocomposites, in Nanocomposite Science and Technology. 2004, Wiley-VCH Verlag GmbH & Co. KGaA. p. 155-214.
8. Sumita, M., et al., Tensile yield stress of polypropylene composites filled with ultrafine particles. Journal of Materials Science, 1983. 18(6): p. 1758-1764.
9. Petrovicova, E., et al., Nylon 11/silica nanocomposite coatings applied by the HVOF process. I. Microstructure and morphology. Journal of Applied Polymer Science, 2000. 77(8): p. 1684-1699.
10. Stankovich, S., et al., Graphene-based composite materials. Nature, 2006. 442(7100): p. 282-286.
11. 安炬科技股份有限公司, 21世紀新材料 神奇的石墨烯. 2016.
12. 蘇清源, 石墨烯量產技術與產業應用. 光連雙月刊 No.108, 2013: p. 61-71.
13. 蘇清源, 石墨烯氧化物之特性與應用前景. 物理雙月刊, 2013: p. 163-167.
14. 陳永勝 and 黃毅, 石墨烯 : 新型二維碳納米材料. 納米科學與技術. 2013: 北京 : 科學出版社, 2013[民102]第一版.
15. 洪偉修, 世界上最薄的材料—石墨烯. 2009.
16. Reina, A., et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 2009. 9(1): p. 30-35.
17. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
18. Luo, D., et al., Evaluation Criteria for Reduced Graphene Oxide. The Journal of Physical Chemistry C, 2011. 115(23): p. 11327-11335.
19. Dikin, D.A., et al., Preparation and characterization of graphene oxide paper. Nature, 2007. 448(7152): p. 457-460.
20. Fuhrer, M.S., C.N. Lau, and A.H. MacDonald, Graphene- Materially Better Carbon. MRS BULLETIN, 2010. 35: p. 289-295.
21. Li, X., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nano, 2008. 3(9): p. 538-542.
22. Gómez-Navarro, C., et al., Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Letters, 2007. 7(11): p. 3499-3503.
23. Tsai, M.-H., et al., Transparent polyimide nanocomposites with improved moisture barrier using graphene. Polymer International, 2013. 62(9): p. 1302-1309.
24. Choi, K., et al., Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-EffectTransistors. acsnano, 2015: p. 5818-5822.
25. Yoon, S.H., et al., Preparations and properties of waterborne polyurethane/allyl isocyanated-modified graphene oxide nanocomposites. Colloid and Polymer Science, 2011. 289(17-18): p. 1809-1814.
26. Yu, B., et al., UV-Curable Functionalized Graphene Oxide/Polyurethane Acrylate Nanocomposite Coatings with Enhanced Thermal Stability and Mechanical Properties. Industrial & Engineering Chemistry Research, 2012. 51(45): p. 14629-14636.
27. Fabbri, P., et al., In-situ graphene oxide reduction during UV-photopolymerization of graphene oxide/acrylic resins mixtures. 2012.
28. Huang, H.-D., et al., High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. Journal of Membrane Science, 2012. 409-410: p. 156-163.
29. 劉茵, et al., 紫外光固化涂料的研究进展及发展趋势. 2011.
30. 王德海 and 汪欞, 紫外光固化材料 : 理論與應用. 2001: 北京 : 科學, 民90初版, 第一刷.
31. 韩俊凤, 卢. 双, and 王正平, 光引發劑自由基型 UV 固化反應的影響, in Applied Science and Technology. 2006.
32. Brinker, C.J., et al., Performance and Long Term Stability of Mesoporous Silica Membranes for Desalination. Membranes, 1982: p. 47-64.
33. Brinker, C.J., et al., Sol-gel transition in simple silicates II. Journal of Non-Crystalline Solids, 1984. 63(1): p. 45-59.
34. Yoldas, B.E., Monolithic glass formation by chemical polymerization. Journal of Materials Science, 1979. 14(8): p. 1843-1849.
35. Nogami, M. and Y. Moriya, Glass formation through hydrolysis of Si(OC2H5)4 with NH4OH and HCl solution. Journal of Non-Crystalline Solids, 1980. 37(2): p. 191-201.
36. Fick, A., Ueber Diffusion. Annalen der Physik, 1855. 170(1): p. 59-86.
37. Wroblewsk, V., Ueber die Natur des Absorption der Gase (Sur labsorption des gaz); Ann. der Physik und Chemie. J. Phys. Theor. Appl., 1879. 8(1): p. 29-52.
38. Henry, W., Experiments on the Quantity of Gases Absorbed by Water, at Different Temperatures, and under Different Pressures. Philosophical Transactions of the Royal Society of London, 1803. 93: p. 29-276.
39. Ashley, R.J., Permeability and Plastics Packaging, in Polymer Permeability, J. Comyn, Editor. 1985, Springer Netherlands: Dordrecht. p. 269-308.
40. Greener, J., et al., Moisture permeability through multilayered barrier films as applied to flexible OLED display. Journal of Applied Polymer Science, 2007. 106(5): p. 3534-3542.
41. Park, Y.-J., et al., UV- and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. International Journal of Adhesion and Adhesives, 2009. 29(7): p. 710-717.
42. Boeffel, C. and A. Wedel, New UV-Curing OLED Encapsulation Adhesive with Low Water Permeation. 2015.
論文全文使用權限:不同意授權