現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:基於腦波分析的即時情緒辨識系統 [以論文名稱查詢館藏系統]
論文英文名稱:EEG-based Real-time Emotion Recognition System [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:管理學院
系所名稱:資訊與財金管理系碩士班
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:簡孝諺
英文姓名:Hsiao-Yen Chien
研究生學號:104AB8006
學位類別:碩士
語文別:中文
口試日期:2017/07/26
論文頁數:38
指導教授中文名:陳育威
指導教授英文名:Yu-Wei Chen
口試委員中文名:吳建文;黃其彥
口試委員英文名:Chien-wen Wu;Chi-Yen Huang
中文關鍵詞:情緒辨識腦波Neurosky
英文關鍵詞:Emotion RecognitionEEGNeurosky
論文中文摘要:近年來許多公司推出了消費級別的腦機介面可穿戴裝置,其價格親民、穿戴方便,這也吸引更多研究學者開始投入其中,使用其當作研究設備的理由,再加上智慧型裝置的普及率,只要結合智慧型裝置,我們再也不必到醫院也能自行偵測腦波數據,直接由智慧型裝置處理腦波數據達到許多應用,或是將智慧型裝置當作中介裝置,將數據傳至後端伺服器作複雜分析。
本研究希望打破以往大多應用程式都使用腦機介面製造商計算出來的放鬆與專注數值,所發展出應用程式相同性高的窘境,我們除了會參考放鬆與專注數值數值之外,還會加入其他數值來改良演算法,最後透過實驗來驗證此演算法的準確度,並實作一套即時情緒辨識雛型系統,系統會將使用者的即時腦波放入此演算法中,使用者即可以看到自身情緒狀態,並記錄情緒透過社群網站分享給親朋好友。
論文英文摘要:Recently, many companies have produced smaller, cheaper and easy to use wearable brain-machine devices. This attracts that many scholars use the brain-machine as a research facility. In addition, smart phones are now popular, we can use smart devices to process data, or pass the data to back-end for analysis.
This study proposes a set of algorithms to improve the problem of high similarity in many brainwave applications. We refer to existing applications and design new algorithms. Finally, the accuracy of the algorithms are verified experimentally. And real-time emotional identification prototype system are implemented. Users will be able to see their own emotional state and share it with friends and family via this system.
論文目次:摘要 ............................................................................................................................................. i
ABSTRACT ............................................................................................................................... ii
誌謝 ........................................................................................................................................... iii
目錄 ........................................................................................................................................... iv
圖目錄 ....................................................................................................................................... vi
表目錄 ..................................................................................................................................... viii
第一章 緒論 ............................................................................................................................ 1
1.1 研究動機 ......................................................................................................................... 1
1.2 研究目的 ......................................................................................................................... 2
1.3 研究設備與軟體 ............................................................................................................. 2
1.4 研究架構 ......................................................................................................................... 3
第二章 文獻探討 .................................................................................................................... 4
2.1 Neurosky ........................................................................................................................... 4
2.2 離散小波轉換 ................................................................................................................. 7
2.3 腦波分析應用於情緒辨識 ............................................................................................. 9
2.4 社群網站 ....................................................................................................................... 11
第三章 系統架構與設計 ...................................................................................................... 12
3.1即時數據擷取 ................................................................................................................ 13
3.2資料預處理 .................................................................................................................... 14
3.3 特徵擷取 ....................................................................................................................... 14
3.3.1 算術平均數 ............................................................................................................. 15
3.3.2 全距 ......................................................................................................................... 15
3.3.3 振幅 ......................................................................................................................... 16
3.4情緒辨識 ........................................................................................................................ 16
第四章 實驗與結果 .............................................................................................................. 17
4.1系統建置 ........................................................................................................................ 17
4.1.1 使用者端 ................................................................................................................. 18
4.1.2 伺服器端 ................................................................................................................. 19
4.2實驗結果 ........................................................................................................................ 28
第五章 結論 .......................................................................................................................... 35
參考文獻 .................................................................................................................................. 36
論文參考文獻:[1] R. Yuvaraj, M. Murugappan, N. Mohamed Ibrahim, M. Iqbal Omar, K. Sundaraj, K. Mohamad, R. Palaniappan, E. Mesquita and M. Satiyan, “On the Analysis of EEG Power, Frequency and Asymmetry in Parkinson Processing,” Behavioral and Brain Functions, 2014.
[2] M. Abo-Zahhad, S. M. Ahmed and S. N. Abbas, “A Novel Biometric Approach for Human Identification and Verification Using Eye Blinking Signal,” IEEE Signal Processing Letters, Vol. 22(7), 2015, 876-880.
[3] 陳竫昊, “應用腦電波之眼動訊號於疲勞狀態的識別,” 臺北科技大學碩士論文, 2014.
[4] C. A. Karin, V. A. Andrés, “Virtual hand prosthesis moved by encephalographic signals,” Engineering Mechatronics and Automation, 2014, 1-5.
[5] Neurosky, “MindWaveMobile:UserGuide,” Available from http://www.neurosky.com/, 2015.
[6] S. Yang, F. Deravi, “Wavelet-based EEG Preprocessing for Biometric Applications,” Emerging Security Technologies, 2013, 43-46.
[7] D. Wu, C. Li, Y. Yin, C. Zhou and D. Yao, "Music composition from the brain signal: representing the mental state by music." Computational intelligence and neuroscience 2010 (2010): 14.
[8] R. Plutchik, “A general psychoevolutionary theory of emotion”, Theories of emotion, 1980, 3-33.
[9] 林威志, “音樂刺激下腦波信號分析,” 臺北醫學大學碩士論文, 2005.
[10] K. Crowley, A. Sliney, I. Pitt and D. Murphy, “Evaluating a Brain-Computer Interface to Categorise Human Emotional Response,” ICALT, 2010.
[11] Y. Dai, X. Wang, P. Zhang and W. Zhang, “Wearable Biosensor Network Enabled Multimodal Daily-life Emotion Recognition Employing Reputation-driven Imbalanced Fuzzy Classification,” Measurement, 2017.
[12] N. G. Prabhu, N. S. Singh, S. V. Singh and N. Patil, “Affective E-learning Using Emotion Detection,” International Journal of Technical Research and Applications, Vol. 4(2), 2016.
[13] R. Mahajan, D. Bansal and S. Singh, “A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses,” International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, Vol. 8(3), 2014, 142-147.
[14] T. Matlovic, P. Gaspar, R. Moro, J. Simko and M. Bielikova, "Emotions detection using facial expressions recognition and EEG," Semantic and Social Media Adaptation and Personalization, 2016, 18-23.
[15] A. Almehmadi, M. Bourque and K. El-Khatib, “A Tweet of the Mind: Automated Emotion Detection for Social Media Using Brainwave Pattern Analysis,” IEEE International Conference on Social Computing, 2013.
[16] M. Kaplan, M. Haenlein, “Users of the World, Unite! The Challenges and Opportunities of Social Media,” Business Horizons, Vol. 53, 2010, 59-68.
[17] 黃浩庭, “智慧型手機打卡服務於社群網站中之應用,” 中原大學碩士論文, 2012.
[18] 劉俊杰, “使用智慧型手機進行臉書打卡功能行為之研究,” 高雄師範大學碩士論文, 2012.
[19] 賴俊穎, “智慧型手機使用者行為對人際關係之研究-以大學生為例,” 高雄師範大學碩士論文, 2012.
[20] Neurosky, “ThinkGear Socket Protocol,” Available from http://www.neurosky.com/, 2010.
論文全文使用權限:不同意授權