現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:研製金屬-介電質多層膜之偏振分光鏡 [以論文名稱查詢館藏系統]
論文英文名稱:Design and fabrication of a metal-dielectric layered polarization beam splitter [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:張意強
英文姓名:Yi-Ciang Jhang
研究生學號:104658070
學位類別:碩士
語文別:中文
口試日期:2017/07/27
論文頁數:52
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen
口試委員中文名:陳昇暉;陳學禮;劉旻忠;任貽均;郭志徹
中文關鍵詞:偏振分光鏡規一化導納軌跡圖金屬-介電質多層膜斜向沉積技術
英文關鍵詞:polarization beam splitterobliquely deposition technologyadmittance matchingmetal-dielectric mutilayer
論文中文摘要:擁有廣波域功能的線性偏振分光鏡在光學儀器中扮演著重要的角色,其主要功能為將一道非線性偏振光,在一波長範圍,分成兩道相互正交的線性偏振光,傳統的膠合稜鏡偏振分光鏡主要在兩個直角稜鏡之間沉積多層高低折射率的介電質薄膜,為了將偏振分光鏡結構簡單化,在本研究中引入了厚度小於12奈米的金屬薄膜,並利用規一化導納軌跡圖設計了三層及五層由金屬及介電質交互堆疊薄膜,其原理為在斜向入射下P偏振光與S偏振光導納可分開設計使其具有線性偏振分光鏡效果,在可見光波段P偏振光具有高穿透,而S偏振光具有高反射,在製程上,我們引入斜向沉積技術鍍製多孔介電質薄膜以滿足設計需求。
論文英文摘要:A linear polarization beam splitter (PBS) functions to separate two linear polarized light from an unpolarized light, and the PBS is required to be broadband in most application. The common PBS requires many dielectric films to be arranged between a pair of prism to work in the visible regime. In order to have a brief structured PBS, ultra-thin metal films with thicknesses less than 12nm are introduced in the design of a PBS. Three-layered and five layered metal-dielectric multilayered PBSs are designed in the normalized admittance diagram (NAD). The equivalent admittance of both P-pol and S-pol can be tailored separately to perform polarization beam splitting at oblique incidence. In fabrication, obliquely deposition is applied to deposit porous dielectric films to satisfy the design demand.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
第一章 文獻回顧 1
1.1前言 1
1.2全介電質層狀偏振分光鏡 1
1.3奈米結構偏振分光鏡 4
1.4金屬-介電質多層膜堆 7
1.5研究動機 9

第二章 原理 10
2.1 光學導納 10
2.2 等反射率曲線 12
2.3 對稱膜堆理論 14
第三章 實驗設計與分析 19
3.1 前言 19
3.2斜向入射導納 19
3.3設計原理 21
3.4三層介電質-金屬交互堆疊對稱型結構 21
3.5五層介電質-金屬交互堆疊對稱型結構 28
3.6改良三層金屬-介電質對稱型結構 32
第四章 實驗與量測系統 36
4.1 鍍膜系統 36
4.1.1 物理氣相沉積法 36
4.1.2 真空抽氣系統 36
4.1.3 冷卻系統 37
4.1.4 實驗流程 37
4.2 量測系統 38
4.2.1 橢圓偏光術與量測 38
4.2.2 橢圓偏光儀之光學常數分析 40
4.2.3 光譜儀量測系統 40
第五章 實驗結果 42
5.1三層對稱型結構之光學特性 42
5.2五層對稱型結構之光學特性 44
5.3改良三層金屬-介電質對稱型結構之光學特性 46
5.4金屬與介質之光學參數 47
第六章 結論 50
參考文獻 51
論文參考文獻:1. H. A. Macleod, Thin-Film optical filters 4th edition, London: CRC Press (2010).
2. I. Hodgkinson and Q. H. Wu, "Inorganic Chiral Optical Materials," Adv. Mater. vol 13, 2001, pp. 889-897.
3. I. Hodgkinson and Q. H. Wu, " Birefringent thin-film polarizers for use at normal incidence and with planar technologies," Applied Physics Letters 74, 1794 (1999).
4. J.-Q. Xi et al, Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photonics 1, 176-179 (2007) .
5. Y. J. Jen and C. Y. Peng, “Narrow-band and broad-band polarization conversion reflection filters,” Applied Physics Letters 89, 041128 (2006).
6. S. M. Macneille, “Beam splitter,” US Patent 2,403,731 filed 1 Apr. 1943, and issued 9 Jul. 1946.
7. Li Li and J. A. Dobrowolski, “THIN FILM POLARIZING DEVICE,” US Patent 5,912,762 filed 12 Aug. 1992, and issued 15 Jun. 1999.
8. J. M. Jonza, M. F. Weber, A. J. Ouderkirk, and C. A. Stover, “Polarizing beam-splitting optical component,” US Patent 5,962,114 filed 28 Oct. 1997, and issued 5 Oct. 1999.
9. I. J. Hodgkinson and Q. H. Wu, “Birefringent Thin Films and Polarizing Elements,” World Scientific (1998)
10. 翟光耀, “光子晶體偏振分光鏡之設計與製作, ” 國立中央大學,碩士論文,民國97年
11. G. R. Bird and M. Parrish, “The Wire Grid as a Near-Infrared Polarizer,” Optical Society of America 50(9), 886-891 (1960)
12. Y. J. Shin , Y. K. Wu , K. T. Lee , J. G. Ok , and L. J. Guo , “Fabrication and Encapsulation of a Short-Period Wire Grid Polarizer with Improved Viewing Angle by the Angled-Evaporation Method,” Advanced Materials 1, 863-868 (2013).
13. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470-474 (2013).
14. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” nature photonics 7, 958-967 (2013).
15. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
16. D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
17. T. Xu, and H. J. Lezec,“Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nature communications 5, 4141 (2014).
18. 李正中,光學薄膜與鍍膜技術,藝軒圖書出版社 (2012).
19. Y. J Jen, W. C. Liu, T.K Chen, S. W Lin, and Y. C. Jhang, “Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber,” Scientific reports 7, 03392 (2017).
20. Li Li, and Z. Pang, “THIN FILM POLARIZING DEVICE HAVING METAL-DIELECTRIC FILMS,” US Patent 6,317,624 filed 17 Dec. 1999, and issued 13 Nov. 2001.
21. M. O. Jensen and M. J. Brett, Sculptured thin films and glancing angle deposition thin films, ” IEEE Trans. Nanotechnol. 4, 269-277 (2005) .
論文全文使用權限:不同意授權