現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:利用低溫固態反應燒結法開發La0.85RxSr0.15-xGa0.8Mg0.2O2.825 (R = Ca、Ba)基電解質之固態氧化物燃料電池之研究 [以論文名稱查詢館藏系統]
論文英文名稱:The Study of the La0.85RxSr0.15−xGa0.8Mg0.2O2.825 Electrolyte Prepared in the Low Sintering Temperature by Solid State Reaction in Solid Oxide Fuel Cells. [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:饒宸瑞
英文姓名:Chen-Ruei Rao
研究生學號:104788045
學位類別:碩士
語文別:中文
口試日期:2017/06/16
論文頁數:183
指導教授中文名:吳玉娟
口試委員中文名:楊永欽;洪逸明;郭俞麟;徐永富;吳玉娟
中文關鍵詞:固態反應法IT-SOFC導電率交流阻抗電解質全電池
英文關鍵詞:Solid–state reactionSolid oxide fuel cellAC resistanceElectrolyteCell
論文中文摘要:本實驗利用固態反應法合成La0.85RxSr0.15–xGa0.8Mg0.2O2.825 (R = Ca、Ba;x = 0.01、0.03、0.05與0.07)之鈣鈦礦基電解質,其具有高的離子傳導特性。利用XRD、SEM、拉曼光譜儀、XPS、直流電性與交流阻抗、電化學工作站等儀器,分析試片的晶體結構、顯微結構、離子傳導性。XRD分析可知在經1400°C持溫5小時燒結後可得到幾乎為鈣鈦礦單一相結構,而在La0.85Sr0.15Ga0.8Mg0.2O2.825、La0.85Ba0.01Sr0.14Ga0.8Mg0.2O2.825、La0.85Ba0.03Sr0.12Ga0.8Mg0.2O2.825與La0.85Ca0.01Sr0.14Ga0.8Mg0.2O2.825則有二次相存在。藉由SEM分析可知全部電解質樣品均為緻密結構。La0.85Ca0.07Sr0.05Ga0.8Mg0.2O2.825樣品有液相燒結現象產生。XPS分析了解La3d3/2與La3d5/2皆有峰值分裂的現象產生。在800°C時La0.85Sr0.15Ga0.8Mg0.2O2.825擁有最高DC導電率(0.1556 S/cm)。而藉由電化學阻抗分析儀可知800°C時LSGM1520擁有最高導電率(0.22 S/cm)。Cell–LCSGM03擁有最大的功率密度,其於800°C時高達567 mW/cm2。
論文英文摘要:In this study, the La0.85RxSr0.15−xGa0.8Mg0.2O2.825 (R = Ca and Ba; x ≦ 0.07) were synthesized in the low sintering temperature by solid state reaction. The microstructures and electrical properties of the electrolytes are analyzed by using XRD, SEM, XPS, Raman, electrochemical analysis and AC impedance spectroscopy. The XRD results showed that all samples have an almost single LSGM phase. SEM results show that the all samples have the dense structure. XPS results show a clear doublet structure in the narrow region scan of the core level La 3d3/2 and 3d5/2. The LSGM1520 has the higher ionic conductivity (0.22 S/cm) at 800°C. At 800°C, the open circuit voltages and maximum power densities of the Cell–LSGM1520, Cell–LBSGM03, Cell–LBSGM05, Cell–LCSGM03 and Cell–LCSGM05 electrolyte-supported cells were 0.95 V and 539 mW/cm2, 0.95 V and 500 mW/cm2, 0.94 V and 506 mW/cm2, 0.94 V and 567 mW/cm2, and 0.93 V and 547 mW/cm2, respectively. The Ohmic resistances of the Cell–LSGM1520, Cell–LBSGM03, Cell–LBSGM05, Cell–LCSGM03 and Cell–LCSGM05 cells measured at 800°C were 0.307, 0.31, 0.32, 0.25 and 0.272 Ω∙cm2, respectively.
論文目次:中文摘要 i
英文摘要 iii
目錄 v
表目錄 xi
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 2
第二章 文獻回顧 4
2.1 燃料電池簡介 4
2.2 燃料電池種類 4
2.3 固態氧化物燃料電池簡介 5
2.4 鎵酸鑭基電解質材料介紹 7
2.4.1 LSGM電解質摻雜不同元素之影響 14
2.5 固態氧化物燃料電池之陽極材料 16
2.6 固態氧化物燃料電池之陰極材料 17
2.7 SOFC性質探討 19
2.7.1 SOFC之開路電壓 19
2.7.2 SOFC之開路電壓 19
2.7.3 SOFC之開路電壓[3][35] 20
2.7.4 SOFC之開路電壓[35] 23
2.7.5 SOFC之開路電壓[35] 24
2.7.6 SOFC之三相邊界 27
2.8 SOFC之測試與應用 30
2.8.1 電流–電壓測量 31
2.8.2 電化學阻抗譜法(EIS)[35] 34
第三章 實驗方法與步驟 36
3.1 粉末分析 36
3.2 樣品製備 40
3.2.1 多元素摻雜電解質製備 41
製程(A) 41
製程(B) 43
3.2.2 中間功能層與陰陽極製備 47
3.3 相對密度分析 53
3.4 X光繞射分析儀 54
3.5 掃描式電子顯微鏡 54
3.6 還原氣氛量測 55
3.7 感應耦合電漿質譜分析儀 55
3.8 拉曼光譜儀 56
3.9 X射線光電子能譜分析儀 56
3.10 熱重損失分析(TGA) 56
3.11 電解質交流阻抗頻譜分析 57
3.12 電解質直流電性分析 57
3.13 全電池電性量測 58
第四章 結果與討論 59
4.1 LSGM1520與其多元摻雜樣品製備與分析 59
4.2 XRD之分析 59
製程(A) 59
製程(B) 62
4.3 繞射峰值偏移與晶格常數之分析 67
4.4 阿基米德–相對密度之分析 70
4.5 SEM顯微結構之分析 72
4.6 還原氣氛測試分析 84
4.7 感應耦合電漿質譜分析儀之分析 90
4.8 X射線光電子能譜學分析儀之分析 90
4.9 熱重損失分析(TGA) 93
4.10拉曼光譜儀之分析 94
4.11 AC交流阻抗分析 96
4.12 DC電性量測及分析 106
4.13 全電池量測分析 111
4.13.1 全電池量測方法 111
4.13.2 電極厚度對電池性能之影響 112
4.13.3 全電池量測之分析 112
塗佈雙邊LDC46功能層之全電池分析 112
塗佈單邊LDC46功能層之全電池分析 126
塗佈雙邊LDC46功能層之交流阻抗分析 139
塗佈單邊LDC46功能層之交流阻抗分析 151
第五章 結論 159
參考文獻 161
附錄 171
JCPDS卡號 171
論文參考文獻:[1] T. Ishihara, H. Matsuda, and Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor,” J. Am. Chem. Soc., 116 [9] 3801–3803 (1994).
[2] K. Kendall, and M. Kendall, “High–temperature Solid Oxide Fuel Cells for the 21st Century: Fundamentals, Design and Applications,” Elsevier Science., (2015).
[3] 韋文誠,固態燃料電池技術,台北,高立圖書有限公司,中華民國102年4月
[4] A. B. Stambouli, and E. Traversa, “Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy,” Renew. Sustain. Energy Rev., 6 [5] 433–455 (2002).
[5] B. Y. R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides,” Acta Cryst., B25 925–945 (1976).
[6] S. M. Haile, “Fuel cell materials and components,” Acta Mater., 51 [19] 5981–6000 (2003).
[7] N. Preux, A. Rolle, R. N. Vannier, “Electrolytes and ion conductors for solid oxide fuel cells (SOFCs),” Func. Mat. for Sustainable Energy App., Woodhead Publishing Limited, 370–401 (2012).
[8] B. Wang, G. Long, Y. Li, and Y. Ji, “Characterization of SmBa0.5Sr0.5CoCuO5+δ cathode based on GDC and LSGM electrolyte for intermediate–temperature solid oxide fuel cells,” Int. J. Hydrogen Energy, 41 [31] 13603–13610 (2016).
[9] M. Mogensen, N. M. Sammes, and G. A. Tompsett, “Physical, chemical and electrochemical properties of pure and doped ceria,” Solid State Ionics, 129 [1] 63–94 (2000).
[10] D. Marrero–Lõpez, M. C. Martín–Sedeño, J. Peña–Martínez, J. C. Ruiz–Morales, P. Núñez–Coello, and J. R. Ramos–Barrado, “Microstructure and conductivity of La1–xSrxGa 0.8Mg0.2O3–δ electrolytes prepared using the freeze–drying method,” J. Am. Ceram. Soc., 94 [4] 1031–1039 (2011).
[11] H. T. Zhong, D. S. Ai, and X. P. Lin, “LSGM–Carbonate Composite Electrolytes for Intermediate–Temperate SOFCs,” Key Eng. Mater., 602–603 862–865 (2014).
[12] L. Zhang, J. Xiao, Y. Xie, Y. Tang, J. Liu, and M. Liu, “Behavior of strontium and magnesium doped gallate electrolyte in direct carbon solid oxide fuel cells,” J. Alloys Compd., 608 272–277 (2014).
[13] M. Morales, J. M. Pérez–Falcón, A. Moure, J. Tartaj, F. Espiell, and M. Segarra, “Performance and degradation of La0.8Sr0.2Ga 0.85Mg0.15O3–δ electrolyte–supported cells in single–chamber configuration,” Int. J. Hydrogen Energy, 39 [10] 5451–5459 (2014).
[14] M. Li, Y. Zhang, M. An, Z. Lü, X. Huang, J. Xiao, B. Wei, X. Zhu, et al., “Synthesis and characterization of La0.9Sr0.1Ga0.8Mg0.2O3−δ intermediate–temperature electrolyte using conventional solid state reaction,” J. Power Sources, 218 233–236 (2012).
[15] N. Liu, M. Shi, C. Wang, Y. P. Yuan, P. Majewski, and F. Aldinger, “Microstructure and ionic conductivity of Sr and Mg doped LaGaO3,” J. Mater. Sci., 41 [13] 4205–4213 (2006).
[16] K. N. Kim, B. K. Kim, J. W. Son, J. Kim, H. W. Lee, J. H. Lee, and J. Moon, “Characterization of the electrode and electrolyte interfaces of LSGM based SOFCs,” Solid State Ionics, 177 [19–25 SPEC. ISS.] 2155–2158 (2006).
[17] K. Huang, J. H. Wan, and J. B. Goodenough, “Increasing Power Density of LSGM Based Solid Oxide Fuel Cells Using New Anode Materials,” J. Electrochem. Soc., 148 [7] A788 (2001).
[18] J. E. Hong, T. Inagaki, S. Ida, and T. Ishihara, “Improved sintering and electrical properties of La–doped CeO2 buffer layer for intermediate temperature solid oxide fuel cells using doped LaGaO3 film prepared by screen printing process,” J. Solid State Electrochem., 16 [4] 1493–1502 (2012).
[19] K. Yamaji, T. Horita, N. Sakai, and H. Yokokawa, “Comparison between La0.9Ba0.1Ga0.8Mg0.2O2.85 and La0.9Sr0.1Ga0.8Mg0.2O2.85 as SOFCs electrolytes,” Solid state ionics, 153 517–523 (2002).
[20] Raghvendra, R. K. Singh, and P. Singh, “Electrical conductivity of barium substituted LSGM electrolyte materials for IT–SOFC,” Solid State Ionics, 262 [September] 428–432 (2014).
[21] Raghvendra, R. K. Singh, A. S. K. Sinha and P. Singh, “Investigations on structural and electrical properties of calcium substituted LSGM electrolyte materials for IT–SOFC,” Ceram. Int., 40 [7] 10711–10718 (2015).
[22] X. C. Lu and J. H. Zhu, “Effect of Sr and Mg Doping on the Property and Performance of the La1− x Sr x Ga1− y Mg y O3− δ Electrolyte,” J. Electrochem. Soc., 155 [5] B494 (2008).
[23] J. M. Haag, B. D. Madsen, S. A. Barnett, and K. R. Poeppelmeier, “Application of LaSr2Fe2CrO9−δ in solid oxide fuel cell anodes,” Electrochem. Solid–State Lett., 11 [4] B51 (2008).
[24] C. Jin, Z. Yang, H. Zheng, C. Yang, and F. Chen, “La0.6Sr1.4MnO4 layered perovskite anode material for intermediate temperature solid oxide fuel cells,” Electrochem. commun., 14 [1] 75–77 (2012).
[25] Z. Yang, N. Xu, M. Han, and F. Chen, “Performance evaluation of La0.4Sr0.6Co0.2 Fe0.7Nb0.1O3−δ as both anode and cathode material in solid oxide fuel cells,” Int. J. Hydrogen Energy, 9 4–8 (2014).
[26] F. Zurlo, E. DiBartolomeo, A. D’Epifanio, V. Felice, I. Natali Sora, L. Tortora, and S. Licoccia, “La0.8Sr0.2Fe0.8Cu0.2O3−δ as ‘cobalt–free’ cathode for La0.8Sr0.2Ga0.8Mg0.2O3−δ electrolyte,” J. Power Sources, 271 187–194 (2014).
[27] S. Sengodan, S. Choi, A. Jun, T. H. Shin, Y. W. Ju, H. Y. Jeong, J. Shin, J. T. S. Irvine, et al., “Layered oxygen deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells,” Nat. Mater., 14 [2] 205–209 (2014).
[28] M. A. Buccheri, A. Singh, and J. M. Hill, “Anode versus electrolyte–supported Ni–YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performance and carbon formation for the direct utilization of dry methane,” J. Power Sources, 196 [3] 968–976 (2011).
[29] I. Ruiz de Larramendi, D. G. Lamas, M. D. Cabezas, J. I. Ruiz de Larramendi, N. E. Walsöe de Reca, andT. Rojo, “Development of electrolyte–supported intermediate temperature single chamber solid oxide fuel cells using Ln0.7Sr0.3Fe0.8Co0.2O3–δ (Ln = Pr, La, Gd) cathodes,” J. Power Sources, 193 [2] 774–778 (2009).
[30] M. Chen, B. H. Kim, Q. Xu, O. J. Nam, and J. H. Ko, “Synthesis and performances of Ni–SDC cermets for IT–SOFC anode,” J. Eur. Ceram. Soc., 28 [15] 2947–2953 (2008).
[31] Y. Leng, S. H. Chan, andQ. Liu, “Development of LSCF–GDC composite cathodes for low temperature solid oxide fuel cells with thin film GDC electrolyte,” Int. J. Hydrogen Energy, 33 [14] 3808–3817 (2008).
[32] G. Chiodelli and L. Malavasi, “Electrochemical open circuit voltage (OCV) characterization of SOFC materials,” Ionics (Kiel)., 19 [8] 1135–1144 (2013).
[33] R. I. Salim, H. Noura, M. Nabag, and A. Fardoun, “Modeling and Temperature Analysis of the Nexa 1.2 kW Fuel Cell System,” J. Fuel Cell Sci. Technol., 12 [6] 61006 (2015).
[34] P. Costamagna, A. Selimovic, M. DelBorghi, and G. Agnew, “Electrochemical model of the integrated planar solid oxide fuel cell (IP–SOFC),” Chem. Eng. J., 102 [1] 61–69 (2004).
[35] R. Ohayre, S. W. Cha, F. B. Prinz, and W. Colella, “Fuel cell fundamentals,” John Wiley & Sons, (2016)
[36] H. V. M. Hamelers, A. terHeijne, N. Stein, R. A. Rozendal, and C. J. N. Buisman, “Butler–Volmer Monod model for describing bio–anode polarization curves,” Bioresour. Technol., 102 [1] 381–387 (2011).
[37] S. Haji, “Analytical modeling of PEM fuel cell i–V curve,” Renew. Energy, 36 [2] 451–458 (2011).
[38] D. A. Noren andM. A. Hoffman, “Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models,” J. Power Sources, 152 [1–2] 175–181 (2005).
[39] J. X. Wang, F. A. Uribe, T. E. Springer, J. Zhang, and R. R. Adzic, “Intrinsic kinetic equation for oxygen reduction reaction in acidic media: the double Tafel slope and fuel cell applications,” Faraday discussions, 140 347–362 (2009).
[40] L. Feng, Y. Yan, Y. Chen, and L. Wang, “Nitrogen doped carbon nanotubes as efficient and durable metal–free cathodic catalysts for oxygen reduction in microbial fuel cells,” Energy Environ. Sci., 4 [5] 1892 (2011).
[41] H. Rismani–Yazdi, S. M. Carver, A. D. Christy, and O. H. Tuovinen, “Cathodic limitations in microbial fuel cells: An overview,” J. Power Sources, 180 [2] 683–694 (2008).
[42] S. Yang, T. Chen, Y. Wang, Z. Peng, and W. G. Wang, “Electrochemical analysis of an anode–supported SOFC,” Int. J. Electrochem. Sci., 8 [2] 2330–2344 (2013).
[43] F. Calise, M. Dentice d’Accadia, A. Palombo, and L. Vanoli, “Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC) Gas Turbine System,” Energy, 31 [15] 3278–3299 (2006).
[44] N. Brandon and D. Brett, “Engineering porous materials for fuel cell applications,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 364 [1838] 147–159 (2006).
[45] H. Fukunaga, M. Ihara, K. Sakaki, and K. Yamada, “The relationship between overpotential and the three phase boundary length,” Solid State Ionics, 86–88 [PART 2] 1179–1185 (1996).
[46] B. Kenney, M. Valdmanis, C. Baker, J. G. Pharoah, and K. Karan, “Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes,” J. Power Sources, 189 [2] 1051–1059 (2009).
[47] DaHan, X. Liu, F. Zeng, J. Qian, T. Wu, and Z. Zhan, “A micro–nano porous oxide hybrid for efficient oxygen reduction in reduced temperature solid oxide fuel cells,” Sci. Rep., 2 1–5 (2012).
[48] F. Barbir, “PEM fuel cells: theory and practice.” Academic Press, (2012).
[49] M. Bavarian, M. Soroush, I. G. Kevrekidis, and J. B. Benziger, “Mathematical Modeling, Steady–State and Dynamic Behavior, and Control of Fuel Cells: A Review,” Ind. Eng. Chem. Res., 49 [17] 7922–7950 (2010).
[50] M. Henke, J. Kallo, K. A. Friedrich, and W. G. Bessler, “Influence of pressurisation on SOFC performance and durability: A theoretical study,” Fuel Cells, 11 [4] 581–591 (2011).
[51] A. C. Chien and S. S. C. Chuang, “Effect of gas flow rates and Boudouard reactions on the performance of Ni/YSZ anode supported solid oxide fuel cells with solid carbon fuels,” J. Power Sources, 196 [10] 4719–4723 (2011).
[52] Q. A. Huang, R. Hui, B. Wang, and J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis,” Electrochim. Acta., 52 [28] 8144–8164 (2007).
[53] B. Y. Chang, and S. M. Park, “Electrochemical impedance spectroscopy,” Annu. Rev. Analy. Chem., 3 207–229 (2010).
[54] A. Lasia, “Electrochemical impedance spectroscopy and its applications,” New York: Springer, (2014).
[55] 王曉紅、黃宏,燃料電池基礎,台北,全華圖書股份有限公司,中華民國97年10月
[56] B. Y. R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides,” Acta Cryst., B25 925–945 (1976).
[57] Z. Jiao, N. Shikazono, and N. Kasagi, “Quantitative Characterization of SOFC Nickel–YSZ Anode Microstructure Degradation Based on Focused–Ion–Beam 3D–Reconstruction Technique,” J. Electrochem. Soc., 159 [3] B285 (2012).
[58] P. Datta, P. Majewski, and F. Aldinger, “Structural studies of Sr and Mg doped LaGaO3,” J. Alloys Compd., 438 [1–2] 232–237 (2007).
[59] 李明澤,固態電解質La1‒xSrxGa1–yMgyO3–δ之電性及微觀結構分析,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2011。
[60] 陳劭瑋,LSGM電解質支撐型之全電池製備與燒結機制探討,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2015。
[61] 黃坤祥,粉末冶金學(再版),新竹,中華民國粉末冶金協會,中華民國92年9月
[62] K. Yamaji, “Compatibility of La0.9Sr0.1Ga0.8Mg0.2O2.85 as the electrolyte for SOFCs,” Solid State Ionics, 108 [1–4] 415–421 (1998).
[63] S. N. Shkerin, M. V. Kuznetsov, and N. A. Kalashnikova, “X–ray Photoelectron Spectroscopy of the Surface of Solid Electrolyte La0.88Sr0.12Ga0.82Mg0.18O3–α,” Russ. J. Electrochem., 39 [6] 591–599 (2003).
[64] K. Yamaji, H. Negishi, T. Horita, N. Sakai, and H. Yokokawa, “Vaporization process of Ga from doped LaGaO3 electrolytes in reducing atmospheres,” Solid State Ionics, 135 [1–4] 389–396 (2000).
[65] 汪建民,材料分析,新竹,中國材料科學學會,中華民國87年10月。
[66] B. Liu, L. Tang, and Y. Zhang, “Preparation and characterization of La0.9Sr0.1Ga0.8Mg0.2O3–δ thin film on the porous cathode for SOFC,” Int. J. Hydrogen Energy, 34 [1] 440–445 (2009).
[67] R. C. Biswal and K. Biswas, “Novel way of phase stability of LSGM and its conductivity enhancement,” Int. J. Hydrogen Energy, 40 [1] 509–518 (2015).
[68] P. Datta, P. Majewski, and F. Aldinger, “Study of strontium and magnesium doped lanthanum gallate solid electrolyte surface by X–ray photoelectron spectroscopy,” Mater. Res. Bull., 43 [1] 1–8 (2008).
[69] L. Schlapbach and H. R. Scherrer, “XPS core level and valence band spectra of LaH3,” Solid State Commun., 41 [12] 893–897 (1982).
[70] S. Suga, S. Imada, T. Muro, T. Fukawa, T. Shishidou, Y. Tokura, Y. Moritomo and T. Miyahara, “La 4d and Mn core absorption magnetic circular dichroism, XPS and inverse photoemission spectroscopy of La1−xSrxMnO3,” J. Electron. Spectrosc. Relat. Phenom., 78 283–286 (1996).
[71] E. Talik, M. Kruczek, H. Sakowska, Z. Ujma, M. Gała, and M. Neumann, “XPS characterisation of neodymium gallate wafers,” J. Alloys Compd., 377 [1–2] 259–267 (2004).
[72] Y. C. Wu, and M. Z. Lee, “Properties and microstructural analysis of La1−xSrxGa1−yMgyO3−δ solid electrolyte ceramic,” Ceram. Int., 39 [8] 9331–9341 (2013).
[73] P. Datta, P. Majewski, and F. Aldinger, “Synthesis and microstructural characterization of Sr- and Mg-substituted LaGaO3 solid electrolyte,” Mater. Chem. Phys., 102 [2–3] 240–244 (2007).
[74] W. Yao, Z. Tang, Z. Zhang, S. Luo, J. Li, and Q. Tan, “Inter–relationship between crystal symmetry and ionic conductivity in doped LaGaO3,” Mater. Sci. Eng. B Solid–State Mater. Adv. Technol., 99 [1–3] 309–312 (2003).
[75] O. Ion, C. La, and S. Ga, “High–Temperature Powder Neutron Diffraction Study,” J. Solid State Chem., 143 [139] 135–143 (1998).
[76] J. Chang, H. W. Lee, and S. J. L. Kang, “Low–Temperature pressureless sintering of Sr and Mg Doped Lanthanum gallate ceramics by sintering atmosphere control,” J. Am. Ceram. Soc., 92 [4] 927–930 (2009).
[77] S. Analysis and A. D.Sheet, “Spectroscopic analysis of solid oxide fuel cell material with XPS,” 2–4 (2009).
[78] S. Cho, D. E. Fowler, E. C. Miller, J. S. Cronin, K. R. Poeppelmeier, and S. A. Barnett, “Fe–substituted SrTiO3−δCe0.9Gd0.1O2 composite anodes for solid oxide fuel cells,” Energy Environ. Sci., 6 [6] 1850 (2013).
[79] Z. Zhan, T. L. Wen, H. Tu, and Z. Y. Lu, “AC Impedance Investigation of Samarium Doped Ceria,” J. Electrochem. Soc., 148 [5] A427 (2001).
[80] 廖翊堯,Ce0.8Sm0.15R0.05O2–δ (R = Ca、Sr) 電解質支撐型固態氧化物燃料電池製程之改良及微結構分析,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2015
[81] S. Perng and C. Chen, “Numerical Investigation of Anode Thickness on the Performance and Heat/Mass Transport Phenomenon for an Anode–Supported SOFC Button Cell,” J. Nanomater., 2015 1–8 (2015).
[82] H. Dai, H. Chen, S. He, G. Cai, and L. Guo, “Improving solid oxide fuel cell performance by a single step co–firing process,” J. Power Sources, 286 427–430 (2015).
[83] X. Meng, W. Yan, N. Yang, X. Tan, and S. Liu, “Highly stable microtubular solid oxide fuel cells based on integrated electrolyte/anode hollow fibers,” J. Power Sources, 275 362–369 (2015).
[84] C. Jin, C. Yang, and F. Chen, “Effects on microstructure of NiO–YSZ anode support fabricated by phase inversion method,” J. Memb. Sci., 363 [1–2] 250–255 (2010).
[85] 黃洧瀚,La0.85Sr0.15Ga0.8Mg0.2O2.825電解質支撐型固態氧化物燃料電池的製程改良與性能之研究,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2016
[86] A. Ansar, D. Soysal, Z. Ilhan, N. Wagner, S. Wolf, and R. Ruckdäschel, “Improving stoichiometry and processing of LSCF oxygen electrode for SOFC,” ECS Trans., 25 [2] 2443–2453 (2009).
[87] N. Sakai, T. Horita, K. Yamaji, M. E. Brito, H. Yokokawa, A. Kawakami, S. Matsuoka, N. Watanabe, et al., “Interface Stability among Solid Oxide Fuel Cell Materials with Perovskite Structures,” J. Electrochem. Soc., 153 [3] A621 (2006).
論文全文使用權限:同意授權於2022-08-10起公開