現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以石墨烯化奈米碳管/普魯士藍微立方體形成之奈米複合物用以對在活細胞中內源性過氧化氫的即時監測與定量分析 [以論文名稱查詢館藏系統]
論文英文名稱:Real-time tracking and quantification of endogenous hydrogen peroxide production in living cells using graphenated carbon nanotubes supported Prussian blue microcubes [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:生化與生醫工程研究所
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:謝長哲
英文姓名:Hsieh, Chang-Che
研究生學號:104688001
學位類別:碩士
語文別:中文
口試日期:2017/06/30
論文頁數:54
指導教授中文名:黃聲東
口試委員中文名:黃聲東;汪昆立;郭憲壽
中文關鍵詞:過氧化氫石墨烯化奈米碳管普魯士藍修飾電極
英文關鍵詞:Hydrogen peroxideGraphenated carbon nanotubesPrussian blueModified electrode
論文中文摘要:近年來對活細胞氧化釋放的活性氧(Reactive oxygen species)的即時追蹤和定量越來越感興趣,因為它們是發病機理的潛在生物標記。本文描述了利用普魯士藍微立方體(PB MCs, Prussian blue Mircocube)修飾的石墨烯化奈米碳管(Graphenated carbon nanotubes, g-CNTs)的快速且靈敏的無酵素H2O2測定。我們通過簡單的水熱合成法製備PB MCs,並與g-CNTs混合,得到PB MCs / g-CNTs三維分層網狀結構的奈米複合材料。同時透過掃描式電子顯微鏡(Scanning electron microscope, SEM)、能量散佈X光分析儀(Energy-dispersive x-ray spectroscopy, EDX),X光繞射分析儀(X-ray diffraction, XRD),傅立葉轉換紅外光譜儀(Fourier transform infrared spectroscopy, FT-IR)驗證了複合材料的結構和組成。並以g-CNT / PB MCs薄膜修飾電極進行電化學檢測,其在最小的過電位值下顯示出優異的電催化活性使H2O2還原。由結果顯示,我們成功構建出一種具快速、靈敏、選擇性和可重複利用的電流傳感器,其有效的工作範圍為0.02-1935μM,最低檢測極限為5±1.2 nM,具有低過電位值、增強訊號、反應迅速和電極的穩定性等優點。最後在實際樣品檢測部分,除了成功地測定了人類血清中外加H2O2之外,也證明該方法可用於追蹤Raw 264.7哺乳動物細胞中的體內產生的H2O2。
論文英文摘要:Recent years have seen a growing interest towards real-time tracking and quantification of reactive oxygen species such as, H2O2 released in living cells, as they are potential biomarkers for pathogenesis. Herein, we described a rapid and sensitive enzymeless H2O2 assay using Prussian blue microcubes (PB MCs) decorated graphenated carbon nanotubes (g-CNTs) and this assay was successfully demonstrated for the tracking of in-vivo H2O2 production in Raw 264.7 mammalian cells. The PB MCs was prepared through facile hydrothermal route and blended with g-CNTs to yield 3D hierarchical network of PB MCs/g-CNTs nanocomposite. The structure and composition of the composite was verified by SEM, EDX, mapping, XRD, FT-IR, impedance and electrochemical methods. The g-CNTs/PB MCs film modified electrode was fabricated which displayed excellent electrocatalytic activity to H2O2 reduction at minimized overpotential. A rapid, sensitive, selective, durable and reproducible amperometric sensor was constructed that displayed working range of 0.02–1935 µM, and low limit of detection of 5±1.2 nM. The method was successful in the determination of H2O2 spiked in human serum. The other advantages of the method are low overpotential, enhanced signal, quick response time, practicality in mammalian cells and robustness of the electrode.
論文目次:摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
第二章 文獻探討 2
2.1化學修飾電極 2
2.2生化感測器 2
2.3過氧化氫的生理關聯性 4
2.3.1簡介 4
2.3.2發炎反應 5
2.3.3 神經退化性疾病 7
2.4現今檢測過氧化氫的方法 8
2.4.1 螢光探針法 8
2.4.2 化學發光法 9
2.4.3 分光光度法 11
2.4.4 電化學分析法 12
2.5普魯士藍 13
2.5.1 簡介 13
2.5.2 生物感測器應用 13
2.6石墨烯化奈米碳管 16
2.6.1 石墨烯 18
2.6.2 奈米碳管 20
第三章 研究動機與分析方法 22
3.1研究動機 22
3.2實驗儀器 23
3.3特性分析方法 24
3.3.1掃描式電子顯微鏡觀察法 24
3.3.2 X光繞射分析法 25
3.3.3傅立葉轉換紅外線光譜法 26
3.3.4電交流阻抗分析法 27
3.4電化學偵測法 28
3.4.1 循環伏安法 28
3.4.2安培法 30
第四章 材料合成與實驗設計 31
4.1實驗藥品列表 31
4.2材料合成 32
4.2.1石墨烯化奈米碳管 32
4.2.2普魯士藍微立方體 32
4.3以g-CNTs/PB MCs薄膜修飾工作電極 33
4.4在RAW264.7真實樣本中即時監測與定量H2O2 33
第五章 結果與討論 34
5.1 g-CNTs, PB MCs與g-CNTs/PB MCs的SEM, EDX與Mapping分析 34
5.2 g-CNTs, PB MCs與g-CNTs/PB MCs的XRD和FTIR分析圖譜 35
5.3 g-CNTs/PB MCs的阻抗分析與電化學研究 36
5.4 g-CNTs/PB MCs/GCE對H2O2的電催化活性研究 38
5.5利用安培法對g-CNTs/PB MCs/GCE進行H2O2的測定 40
5.6 g-CNTs/PB MCs/GCE之選擇性、穩定性與再現性的研究 42
5.7 g-CNTs/PB MCs/GCE於RAW 264.7中對H2O2的即時監測 44
第六章 結論 46
參考文獻 47
論文參考文獻:[1] S.G. Rhee, H2O2, a necessary evil for cell signaling, Science, 312(2006) 1882-3.
[2] J.D. Lambeth, NOX enzymes and the biology of reactive oxygen, Nature Reviews Immunology, 4(2004) 181-9.
[3] J.K. Andersen, Oxidative stress in neurodegeneration: cause or consequence?, (2004).
[4] L.-L. Qu, et al., Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells, Biosensors and Bioelectronics, 77(2016) 292-8.
[5] M. Giorgio, et al., Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals?, Nature reviews Molecular cell biology, 8(2007) 722-8.
[6] P. Wu, et al., Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells, Chemical Communications, 47(2011) 11327-9.
[7] Y. Zhang, et al., Graphene quantum dots/gold electrode and its application in living cell H2O2 detection, Nanoscale, 5(2013) 1816-9.
[8] J. Ju, W. Chen, In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments, Analytical chemistry, 87(2015) 1903-10.
[9] S. Dong, et al., High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells, Analytica chimica acta, 853(2015)200-6.
[10] J. Liu, X. Bo, Z. Zhao, L. Guo, Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells, Biosensors and Bioelectronics, 74(2015)71-7.
[11] P. Saber, W. Lund, Morphology of Pycnoporus Coccineus (FR.) Bond. And Sing. In vitro, Talanta, 29(1982)457.
[12] J. Wang, D. L. Hutchins-Kumar, Parallel dual-electrode detection based on size exclusion for liquid chromatography/electrochemistry, Anal. Chem., 58 (1986) 402.
[13] R. P. Baldwin, Thomsen, K. N. Talanta, Chemically modified electrodes in liquid chromatography detection: A review, 38(1991)1.
[14] R.W.Murra, A. G. Ewing, R. A. Durst, Chemically modified electrodes. Molecular design for electroanalysis, Anal. Chem., 59(1987)379A.
[15] Tîlmaciu C-M, Morris MC(2015)Carbon nanotube biosensors. Front. Chem. 3:59
[16] M. A. Gilmartin, J. P. Hart, Sensing with chemically and biologically modified carbon electrodes. A review., Analyst, 120(1995)1029.
[17] J. Clark and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of Sciences, 102(1962)29
[18] Sigma Chemical Co., Material Safety Data Sheet(2000)
[19] Windhol M, ed. (1995) The Merck Index, 12th Ed. New York: Merck amd Co. Inc.
[20] Acworth IN, Bailey B.(1995)The Handbook of Oxidative Metabolism. Chelmsford, MA: ESA, Inc.
[21] Stryer, L.(1995)Biochemistry Fourth Ed. New York: W. H. Freeman and Company.
[22] Hindawi Publishing Corporation Advances in Hematology Volume (2012)
[23] Koji Fukui. J. Clin. Biochem. Nutr. November 2016. vol. 59 no. 3
[24] A Highly Selective Fluorescent Chemosensor for Lead Ions" Chen, C.-T.; Huang, W.-P. J. Am. Chem. Soc. 2002, 124, 6246-6247
[25] Hatsuo Maeda, Yuka Fukuyasu, Shoko Yoshida,Masako Fukuda, Kanako Saeki, Hiromi Matsuno,Yuji Yamauchi, Kenji Yoshida, Kazumasa Hirata, and Kazuhisa Miyamoto Angew. Chem. Int. Ed.2004, 43, 2389–2391
[26] Krzysztof Żamojć, Magdalena Zdrowowicz, Dagmara Jacewicz, Dariusz Wyrzykowski & Lech Chmurzyński (2016) Fluorescent Probes Used for Detection of Hydrogen Peroxide under Biological Conditions, Critical Reviews in Analytical Chemistry, 46:3, 171-200
[27] 楊曉燕,增強化學發光分析新體系的研究及其在免疫分析中的應用,青島科技大學博士論文
[28] Naoya YAMASHIRO , Shunsuke UCHIDA , Yoshiyuki SATOH , Yusuke MORISHIMA , Hiroaki YOKOYAMA , Tomonori SATOH , Junichi SUGAMA & Rie YAMADA (2004) Determination of Hydrogen Peroxide in Water by Chemiluminescence Detection, (I), Journal of Nuclear Science and Technology, 41:9, 890-897
[29] Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis, 6th ed.; Brooks/Cole: Belmont, 2007; pp. 336-342.
[30] Raquel F. Pupo Nogueira, Mirela C. Oliveira, Willian C. Paterlini. R.F.P. Nogueira et al. / Talanta 66 (2005) 86–91
[31] Skoog and J. J. Leary, Principles of Intrumetntal Analysis, 4th ed. Pliladelphia: Saynders College Publishing, (1992)
[32] Abdollah Salimi, Leyla Miranzadeh, Rahman Hallaj, Hussein Mamkhezria. Electroanalysis 20, 2008, No. 16, 1760–1768
[33] 蕭米珍,淺談普魯士藍-Prussian blue,高雄女中化學學科中心。
[34] R. Zhang, W. Chen, Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors, Biosensors and Bioelectronics, 89(2017) 249-68.
[35] Arkady A. Kayakin, Olga V. Gitelmacher and Elena E. Kayakina Analytical Chemistry, Vol. 67, No. 14, July 15, 1995
[36] F. Ricci, G. Palleschi / Biosensors and Bioelectronics 21 (2005) 389–407
[37] B.R. Stoner, J.T. Glass, Carbon nanostructures: A morphological classification for charge density optimization, Diamond and Related Materials, 23(2012) 130-4.
[38] 蘇清源,石墨烯量產技術與產業應用,光速雙月刊,2013年11月,no.108
[39] 蘇清源,石墨烯氧化物之特性與應用前景,物理雙月刊,2011年4月
[40] Martin Pumera. Graphene in biosensing, MATERIALSTODAY JULY-AUGUST 2011 | VOLUME 14 | NUMBER 7-8
[41] S. Iijima, Nature, 354,(1991)56
[42] 張家銘,以奈米碳管為基材的生物感測器,中國文化大學,2009年
[43] 羅聖全,電子顯微鏡介紹 –SEM,材料世界網,小奈米大世界
[44] 林麗娟,X光繞射原理與其應用,工業材料第86期,1994年2月
[45] G. Varsanyi, “Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives”, Wiley, New York, 1974.
[46] Impedance Spectroscopy: Theory, Experiment, and Applications E. Barsoukov and J. R. Macdonald, Eds., Wiley-Interscience, 2005.
[47] 周映傑,拋棄式奈米孔洞金銅合金電極之製備與應用,國立中興大學化學研究所碩士論文,102年7月
[48] Chao Zhang et al. Graphene Oxide-Assisted Dispersion of Pristine Multiwalled Carbon Nanotubes in Aqueous Media. J. Phys. Chem. C 2010, 114, 11435–11440
[49] Xingfa Gao et al. Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design. J. Phys. Chem. C 2010, 114, 832–842
[50] Takashi Uemura and Susumu Kitagawa, Prussian Blue Nanoparticles Protected by Poly(vinylpyrrolidone) J. Am. Chem. Soc., 2003, 125 (26), pp 7814–7815
[51] Seunghee Wooa, Yang-Rae Kim, Taek Dong Chung, Yuanzhe Piao, Hasuck Kim. Electrochimica. Acta 59 (2012) 509– 514
[52] W. Qiu et al. Materials Science and Engineering C 72 (2017) 692–700
[53] G. Liang, L. Zheng, S. Bao, H. Gao, F. Zhu, Q. Wu, Graphene-induced tiny flowers of organometallic polymers with ultrathin petals for hydrogen peroxide sensing, Carbon, 93(2015) 719-30.
[54] J.-H. Yang, N. Myoung, H.-G. Hong, Facile and controllable synthesis of Prussian blue on chitosan-functionalized graphene nanosheets for the electrochemical detection of hydrogen peroxide, Electrochimica Acta, 81(2012) 37-43.
[55] L. Qian, R. Zheng, L. Zheng, Fabrication of Prussian blue nanocubes through reducing a single-source precursor with graphene oxide and their electrocatalytic activity for H2O2, Journal of Nanoparticle Research, 15(2013) 1806.
[56] Q. Rui, K. Komori, Y. Tian, H. Liu, Y. Luo, Y. Sakai, Electrochemical biosensor for the detection of H 2 O 2 from living cancer cells based on ZnO nanosheets, Analytica Chimica Acta, 670(2010) 57-62.
[57] S. Woo, Y.-R. Kim, T.D. Chung, Y. Piao, H. Kim, Synthesis of a graphene–carbon nanotube composite and its electrochemical sensing of hydrogen peroxide, Electrochimica Acta, 59(2012) 509-14.
[58] X.M. Feng, R.M. Li, Y.W. Ma, R.F. Chen, N.E. Shi, Q.L. Fan, et al., One‐step electrochemical synthesis of graphene/polyaniline composite film and its applications, Advanced Functional Materials, 21(2011) 2989-96.
[59] J. Liu, X. Bo, Z. Zhao, L. Guo, Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells, Biosensors and Bioelectronics, 74(2015) 71-7.
[60] B. Patella, R. Inguanta, S. Piazza, C. Sunseri, A nanostructured sensor of hydrogen peroxide, Sensors and Actuators B: Chemical, 245(2017) 44-54.
[61] Y. Wu, F. Wang, K. Lu, M. Lv, Y. Zhao, Self-assembled dipeptide-graphene nanostructures onto an electrode surface for highly sensitive amperometric hydrogen peroxide biosensors, Sensors and Actuators B: Chemical, (2017).
[62] Y. Zhao, D. Huo, J. Bao, M. Yang, M. Chen, J. Hou, et al., Biosensor based on 3D graphene-supported Fe3O4 quantum dots as biomimetic enzyme for in situ detection of H2O2 released from living cells, Sensors and Actuators B: Chemical, (2017).
[63] P. Ahuja, S.K. Ujjain, R. Kanojia, MnO x/C nanocomposite: An insight on high-performance supercapacitor and non-enzymatic hydrogen peroxide detection, Applied Surface Science, 404(2017) 197-205
[64] Y. Shu, J. Chen, Q. Xu, Z. Wei, F. Liu, R. Lu, et al., MoS2 nanosheet–Au nanorod hybrids for highly sensitive amperometric detection of H2O2 in living cells, Journal of Materials Chemistry B, 5(2017) 1446-53.
[65] H. Yang, Z. Wang, C. Li, C. Xu, Nanoporous PdCu alloy as an excellent electrochemical sensor for H2O2 and glucose detection, Journal of Colloid and Interface Science, 491(2017) 321-8.
[66] Y. Shu, B. Li, Q. Xu, P. Gu, X. Xiao, F. Liu, et al., Cube-like CoSn (OH) 6 nanostructure for sensitive electrochemical detection of H2O2 in human serum sample, Sensors and Actuators B: Chemical, 241(2017) 528-33.
[67] J.-H. Yang, N. Myoung, H.-G. Hong, Facile and controllable synthesis of Prussian blue on chitosan-functionalized graphene nanosheets for the electrochemical detection of hydrogen peroxide, Electrochimica Acta, 81(2012) 37-43.
[68] T. Wang, H. Zhu, J. Zhuo, Z. Zhu, P. Papakonstantinou, G. Lubarsky, et al., Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level, Analytical chemistry, 85(2013) 10289-95.
[69] R. Li, X. Liu, W. Qiu, M. Zhang, In vivo monitoring of H2O2 with polydopamine and prussian blue-coated microelectrode, Analytical chemistry, 88(2016) 7769-76.
[70] Mohiuddin M. Taher and N. Lakshmaiah, Hydroperoxide-Dependent Folic Acid Degradation by Cytochrome c, Journal of Inorganic Biochemistry 31, 133-141 (1987)
[71] Roy G. Cutler et al., The Role of Uric Acid and Methyl Derivatives in the Prevention of Age-Related Neurodegenerative Disorders, Current Topics in Medicinal Chemistry, 2015, 15, 2233-2238
[72] A.A. Karyakin, E.E. Karyakina, L. Gorton, Amperometric biosensor for glutamate using Prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide, Analytical chemistry, 72(2000) 1720-3.
[73] A.A. Karyakin, E.E. Karyakina, L. Gorton, On the mechanism of H2O2 reduction at Prussian Blue modified electrodes, Electrochemistry Communications, 1(1999) 78-82.
[74] P. Wu, Y. Qian, P. Du, H. Zhang, C. Cai, Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells, Journal of Materials Chemistry, 22(2012) 6402-12.
[75] S.K. Maji, S. Sreejith, A.K. Mandal, X. Ma, Y. Zhao, Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing, ACS applied materials & interfaces, 6(2014) 13648-56.
[76] J. Wang, Electrochemical biosensors: towards point-of-care cancer diagnostics, Biosensors and Bioelectronics, 21(2006) 1887-92.
[77] A.P. Periasamy et al,. Preparation and characterization of bismuth oxide nanoparticles-multiwalled carbon nanotube composite for the development of horseradish peroxidase based H2O2 biosensor, Talanta, 87(2011) 15-23.
論文全文使用權限:同意授權於2017-08-10起公開