現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:設計對汞與神經氨酸酶具備高選擇靈敏度之隱藏型化學探針 [以論文名稱查詢館藏系統]
論文英文名稱:Design and Synthesis of Latent Chemical Probes for Selective Recognition and Sensing of Mercury and Neuraminidase [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:工程學院工程科技博士班
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:AHMAD ZAKI MUBAROK
英文姓名:AHMAD ZAKI MUBAROK
研究生學號:103679005
學位類別:博士
語文別:英文
口試日期:2017/07/25
論文頁數:77
指導教授中文名:黃聲東
口試委員中文名:Veerappan Mani;汪昆立;林俊茂;吳瑞裕;黃聲東
中文關鍵詞:Chemical probesmercuryneuraminidase
英文關鍵詞:Chemical probesmercuryneuraminidase
論文中文摘要:Chemical probes designed as a signal producer, which is comprise of a binding unit or recognition site and a signaling unit. The binding unit recognizes a target analyte. This molecular recognition process induce electronic/optical transformation in the signaling unit and generate visible, fluorescent or electrochemical readouts. The selectivity of designed probe is important for the application of the probe to recognize target analyte in environmental or biological samples, which contain a wide variety of other compounds or impurities. This report describes the design, synthesis, and applications of latent chemical probe for specific recognition and sensing of neuraminidase and mercury ion (Hg2+). Small-molecule derivatives of N-acetylneuraminic acid coupling with the electroactive species p-aminophenol, AP-Neu5Ac, exploited for neuraminidase detection. Neuraminidase selectively recognize N-acetylneuraminic acid moiety of AP-Neu5Ac and cleave the glycosidic linkage of AP-Neu5Ac to liberate p-aminophenol, an electroactive reporter. The calculated limit of detection of neuraminidase is 5.6 ng mL-1. The developed method to detect neuraminidase is simple and reproducible in cloudy and colored biological samples. AYF was designed based on reactivity of mercury ion with alkyne. Mercury ion catalyze oxymercuration reaction of AYF to generate fluorogenic reporter 8-formyl-7-hydroxycoumarin with concomitant release of two fluorides as transduction reagent for signal amplification strategy. The incorporation of signal amplification strategy demonstrated in three probes coupling assay using AYF, DPF1, and DCC is significantly enhance the sensitive of developed method to detect mercury ion with limit of detection of 0.16 ppb, which is more sensitive than previous reported fluorescent methods. Moreover, real sample application of this method in tap water and serum samples provide high accuracy and precision, reveal practical usability of this developed sensor.
論文英文摘要:Chemical probes designed as a signal producer, which is comprise of a binding unit or recognition site and a signaling unit. The binding unit recognizes a target analyte. This molecular recognition process induce electronic/optical transformation in the signaling unit and generate visible, fluorescent or electrochemical readouts. The selectivity of designed probe is important for the application of the probe to recognize target analyte in environmental or biological samples, which contain a wide variety of other compounds or impurities. This report describes the design, synthesis, and applications of latent chemical probe for specific recognition and sensing of neuraminidase and mercury ion (Hg2+). Small-molecule derivatives of N-acetylneuraminic acid coupling with the electroactive species p-aminophenol, AP-Neu5Ac, exploited for neuraminidase detection. Neuraminidase selectively recognize N-acetylneuraminic acid moiety of AP-Neu5Ac and cleave the glycosidic linkage of AP-Neu5Ac to liberate p-aminophenol, an electroactive reporter. The calculated limit of detection of neuraminidase is 5.6 ng mL-1. The developed method to detect neuraminidase is simple and reproducible in cloudy and colored biological samples. AYF was designed based on reactivity of mercury ion with alkyne. Mercury ion catalyze oxymercuration reaction of AYF to generate fluorogenic reporter 8-formyl-7-hydroxycoumarin with concomitant release of two fluorides as transduction reagent for signal amplification strategy. The incorporation of signal amplification strategy demonstrated in three probes coupling assay using AYF, DPF1, and DCC is significantly enhance the sensitive of developed method to detect mercury ion with limit of detection of 0.16 ppb, which is more sensitive than previous reported fluorescent methods. Moreover, real sample application of this method in tap water and serum samples provide high accuracy and precision, reveal practical usability of this developed sensor.
論文目次:Abstract... I
Acknowledgments... III
Table of contents... IV
List of figures... V
List of schemes... VIII
List of tables... IX
1. Introduction... 1
1.1. The emphasis of sensor development... 1
1.2. Background of this study... 4
1.3. Objectives... 6
1.4. Design mechanism... 6
2. Literature review... 8
2.1. Latent chemical probes... 8
2.2. Fluorescence assay... 9
2.3. Electrochemical assay... 11
2.4. Amplification of molecular signal... 13
2.5. An important biomarker neuraminidase and methods to detect... 15
2.6. Highly toxic mercury and methods to detect... 17
3. Material and methods... 20
3.1. Material... 20
3.2. Instrumentation... 21
3.3. Methods... 22
4. Results and discussion... 33
4.1. A facile and highly sensitive electrochemical assay for neuraminidase detection... 33
4.2. Multi-probe fluorescence assay with signal amplification for mercury detection ...47
5. Conclusion... 62
References... 64
Appendices... 73
Appendix 1. 1H NMR spectrum of AP-Neu5Ac... 73
Appendix 2. 13C NMR spectrum of AP-Neu5Ac... 73
Appendix 3. Mass spectrum (ESI+) of AP-Neu5Ac... 74
Appendix 4. 1H NMR spectrum of compound 9... 74
Appendix 5. IR spectrum of compound 9...75
Appendix 6. Mass spectrum (ESI+) of compound 9... 75
Appendix 7. 1H NMR spectrum of AYF... 76
Appendix 8. IR spectrum of AYF... 76
Appendix 9. Mass spectrum (ESI+) of AYF... 77
論文參考文獻:1. D. T. Quang and J. S. Kim, “Fluoro-and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens,” Chemical Reviews, 110, 2010, pp. 6280-6301.
2. S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt and J. P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” Biosensors and Bioelectronics, 15, 2000, pp. 549-578.
3. J. Comer, “Semiquantitative specific test paper for glucose in urine,” Analytical Chemistry, 28, 1956, pp. 1748-1750.
4. P. Von Lode, “Point-of-care immunotesting: approaching the analytical performance of central laboratory methods,” Clinical Biochemistry, 38, 2005, pp. 591-606.
5. K. S. Lee, H. J. Kim, G. H. Kim, I. Shin and J. I. Hong, “Fluorescent chemodosimeter for selective detection of cyanide in water,” Organic Letters, 10, 2008, pp. 49-51.
6. Y. Dai, T. Wang, X. Hu, S. Liu, M. Zhang and C. Wang, “Highly sensitive microcantilever-based immunosensor for the detection of carbofuran in soil and vegetable samples,” Food Chemistry, 229, 2017, pp. 432-438.
7. T. I. Kim, J. Park, S. Park, Y. Choi and Y. Kim, “Visualization of tyrosinase activity in melanoma cells by a BODIPY-based fluorescent probe,” Chemical Communications, 47, 2011, pp. 12640-12642.
8. P. L. Carl, P. K. Chakravarty and J. A. Katzenellenbogen, “A novel connector linkage applicable in prodrug design,” Journal of Medicinal Chemistry, 24, 1981, pp. 479-480.
9. M. E. Jun, B. Roy and K. H. Ahn, “Turn-on” fluorescent sensing with “reactive” probes, Chemical Communications, 47, 2011, pp. 7583-7601.
10. L. Gerentes, N. Kessler, M. Aymard, “A sensitive and specific ELISA immunocapture assay for rapid quantitation of influenza A/H3N2 neuraminidase protein,” Journal of Virological Methods, 73, 1998, pp. 185-195.
11. D. E. Wylie, L. D. Carlson, R. Carlson, F. W. Wagner and S. M. Schuster, “Detection of mercuric ions in water by ELISA with a mercury-specific antibody,” Analytical Biochemistry, 194, 1991, pp. 381-387.
12. Y. Li, T. Wu, X. Qi, Y. Ge, X. Guo, B. Wu, H. Yu, Y. Zhu, Z. Shi and H. Wang, “Simultaneous detection of hemagglutinin and neuraminidase genes of novel influenza A (H7N9) by duplex real-time reverse transcription polymerase chain reaction,” Journal of Virological Methods, 194, 2013, pp. 194-196.
13. D. A. Giljohann and C. A. Mirkin, “Drivers of biodiagnostic development,” Nature, 462, 2009, pp. 461-464.
14. A. Moscona, “Neuraminidase inhibitors for influenza,” New England Journal of Medicine, 353, 2005, pp. 1363-1373.
15. T. Corfield, “Bacterial sialidases—roles in pathogenicity and nutrition,” Glycobiology, 2, 1992, pp. 509-521.
16. S. Wasilewski, L. J. Calder, T. Grant and P. B. Rosenthal, “Distribution of surface glycoproteins on influenza A virus determined by electron cryotomography,” Vaccine, 30, 2012, pp. 7368-7373.
17. X. Zhang, A. N. Dhawane, J. Sweeney, Y. He, M. Vasireddi and S. S. Iyer, “Electrochemical assay to detect influenza viruses and measure drug susceptibility,” Angewandte Chemie International Edition, 54, 2015, pp. 5929-5932.
18. J. N. Varghese, J. L. McKimm‐Breschkin, J. B. Caldwell, A. A. Kortt and P. M. Colman, “The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor,” Proteins: Structure, Function, and Bioinformatics, 14, 1992, pp. 327-332.
19. W. Yang, X. Liu, X. Peng, P. Li, T. Wang, G. Tai, X.J. Li and Y. Zhou, “Synthesis of novel N-acetylneuraminic acid derivatives as substrates for rapid detection of influenza virus neuraminidase,” Carbohydrate Research, 359, 2012, pp. 92-96.
20. F. Kivlehan, F. Mavré, L. Talini, B. Limoges and D. Marchal, “Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids,” Analyst, 136, 2011, pp. 3635-3642.
21. F. Song, S. Watanabe, P. E. Floreancig and K. Koide, “Oxidation-resistant fluorogenic probe for mercury based on alkyne oxymercuration,” Journal of the American Chemical Society, 130, 2008, pp. 16460-16461.
22. J. A. Gu, V. Mani and S. T. Huang, “Design and synthesis of ultrasensitive off–on fluoride detecting fluorescence probe via autoinductive signal amplification,” Analyst, 140, 2015, pp. 346-352.
23. R. Hu, J. Feng, D. Hu, S. Wang, S. Li, Y. Li and G. Yang, “A rapid aqueous fluoride ion sensor with dual output modes,” Angewandte Chemie International Edition, 49, 2010, pp. 4915-4918.
24. V. Velusamy, K. Arshak, O. Korostynska, K. Oliwa and C. Adley, “An overview of foodborne pathogen detection: In the perspective of biosensors,” Biotechnology Advances, 28, 2010, pp. 232-254.
25. N. DiCesare and J. R. Lakowicz, “A new highly fluorescent probe for monosaccharides based on a donor–acceptor diphenyloxazole,” Chemical Communications, 2001, pp. 2022-2023.
26. Y. D. Zhuang, P. Y. Chiang, C. W. Wang and K. T. Tan, “Environment‐Sensitive Fluorescent Turn‐On Probes Targeting Hydrophobic Ligand‐Binding Domains for Selective Protein Detection,” Angewandte Chemie International Edition, 52, 2013, pp. 8124-8128.
27. Q. He, E. W. Miller, A. P. Wong and C. J. Chang, “A selective fluorescent sensor for detecting lead in living cells,” Journal of the American Chemical Society, 128, 2006, pp. 9316-9317.
28. A. W. Czarnik, “Desperately seeking sensors,” Chemistry & Biology, 2, 1995, pp. 423-428.
29. H. Abe, J. Wang, K. Furukawa, K. Oki, M. Uda, S. Tsuneda and Y. Ito, “A reduction-triggered fluorescence probe for sensing nucleic acids,” Bioconjugate Chemistry, 19, 2008, pp. 1219-1226.
30. S. T. Huang, C. J. Teng, Y. H. Lee, J. Y. Wu, K. L. Wang and C. M. Lin, “Design and synthesis of a long-wavelength latent fluorogenic substrate for salicylate hydroxylase: a useful fluorimetric indicator for analyte determination by dehydrogenase-coupled biosensors,” Analytical Chemistry, 82, 2010, pp. 7329-7334.
31. M. S. Baker and S. T. Phillips, “A two-component small molecule system for activity-based detection and signal amplification: Application to the visual detection of threshold levels of Pd (II),” Journal of the American Chemical Society, 133, 2011, pp. 5170-5173.
32. D. Smith, M. H. Al-Hakiem and J. Landon, “A review of fluoroimmunoassay and immunofluorometric assay,” Annals of Clinical Biochemistry, 18, 1981, pp. 253-274.
33. B. Valeur and M. N. Berberan-Santos, “A brief history of fluorescence and phosphorescence before the emergence of quantum theory,” Journal of Chemical Education, 88, 2011, pp. 731-738.
34. T. M. Breslin, F. Xu, G. M. Palmer, C. Zhu, K. W. Gilchrist and N. Ramanujam, “Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues,” Annals of Surgical Oncology, 11, 2004, pp. 65-70.
35. J. Wang and A. N. Kawde, “Pencil-based renewable biosensor for label-free electrochemical detection of DNA hybridization,” Analytica Chimica Acta, 431, 2001, pp. 219-224.
36. A. C. Michael and L. Borland, “Electrochemical methods for neuroscience,” CRC Press, 2006.
37. P. T. Kissinger and W. R. Heineman, “Cyclic voltammetry,” Journal of Chemical Education, 60, 1983, pp. 702.
38. A. P. Brown and F. C. Anson, “Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface,” Analytical Chemistry, 49, 1977, pp. 1589-1595.
39. J. Di and F. Zhang, “Voltammetry determination of trace manganese with pretreatment glassy carbon electrode by linear sweep voltammetry,” Talanta, 60, 2003, pp. 31-36.
40. S. W. Thomas, G. D. Joly and T. M. Swager, “Chemical sensors based on amplifying fluorescent conjugated polymers,” Chemical Reviews, 107, 2007, pp. 1339-1386.
41. C. M. Niemeyer, M. Adler and R. Wacker, “Immuno-PCR: high sensitivity detection of proteins by nucleic acid amplification,” TRENDS in Biotechnology, 23, 2005, pp. 208-216.
42. E. Sella and D. Shabat, “Self-immolative dendritic probe for direct detection of triacetone triperoxide,” Chemical Communications, 2008, pp. 5701-5703.
43. C. A. Blencowe, A. T. Russell, F. Greco, W. Hayes and D. W. Thornthwaite, “Self-immolative linkers in polymeric delivery systems,” Polymer Chemistry, 2, 2011, pp. 773-790.
44. R. J. Amir, N. Pessah, M. Shamis and D. Shabat, “Self‐Immolative Dendrimers,” Angewandte Chemie, 115, 2003, pp. 4632-4637.
45. F. M. de Groot, C. Albrecht, R. Koekkoek, P. H. Beusker and H. W. Scheeren, “Cascade‐Release Dendrimers” Liberate All End Groups upon a Single Triggering Event in the Dendritic Core,” Angewandte Chemie, 115, 2003, pp. 4628-4632.
46. G. Soong, A. Muir, M. I. Gomez, J. Waks, B. Reddy, P. Planet, P. K. Singh, Y. Kanetko, M. C. Wolfgang and Y. S. Hsiao, “Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production,” The Journal of Clinical Investigation, 116, 2006, pp. 2297.
47. S. Manco, F. Hernon, H. Yesilkaya, J. C. Paton, P. W. Andrew and A. Kadioglu, “Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis,” Infection and Immunity, 74, 2006, pp. 4014-4020.
48. J. E. Galen, J. Ketley, A. Fasano, S. Richardson, S. Wasserman and J. Kaper, “Role of Vibrio cholerae neuraminidase in the function of cholera toxin,” Infection and Immunity, 60, 1992, pp. 406-415.
49. T. L. Williams, J. L. Pirkle and J. R. Barr, “Simultaneous quantification of hemagglutinin and neuraminidase of influenza virus using isotope dilution mass spectrometry,” Vaccine, 30, 2012, pp. 2475-2482.
50. T. G. Warner and J. S. OBrien, “Synthesis of 2-(4-methylumbelliferyl)-. alpha.-DN-acetylneuraminic acid and detection of skin fibroblast neuraminidase in normal humans and in sialidosis,” Biochemistry, 18, 1979, pp. 2783-2787.
51. U. Grienke, M. Schmidtke, S. von Grafenstein, J. Kirchmair, K. R. Liedl and J. M. Rollinger, “Influenza neuraminidase: A druggable target for natural products,” Natural Product Reports, 29, 2012, 11-36.
52. W. T. Wahyuni, T. A. Ivandini, E. Saepudin and Y. Einaga, “Development of neuraminidase detection using gold nanoparticles boron-doped diamond electrodes,” Analytical Biochemistry, 497, 2016, pp. 68-75.
53. U. Anik, Y. Tepeli and M. F. Diouani, “Fabrication of Electrochemical Model Influenza A Virus Biosensor Based on the Measurements of Neuroaminidase Enzyme Activity,” Analytical Chemistry, 88, 2016, pp. 6151-6153.
54. L. Zhu and E. V. Anslyn, “Signal amplification by allosteric catalysis,” Angewandte Chemie International Edition, 45, 2006, pp. 1190-1196.
55. C. Namasivayam and K. Periasamy, “Bicarbonate-treated peanut hull carbon for mercury (II) removal from aqueous solution,” Water Research, 27, 1993, pp. 1663-1668.
56. T. Yorifuji, T. Tsuda, S. Inoue, S. Takao and M. Harada, “Long-term exposure to methylmercury and psychiatric symptoms in residents of Minamata, Japan,” Environment International, 37, 2011, pp. 907-913.
57. T. W. Clarkson, “Mercury: major issues in environmental health,” Environmental Health Perspectives, 100, 1993, pp. 31.
58. C. R. Santerre, “Balancing the risks and benefits of fish for sensitive populations,” Journal of Foodservice, 19, 2008, pp. 205-212.
59. S. H. Omang, “Determination of mercury in natural waters and effluents by flameless atomic absorption spectrophoto-metry,” Analytica Chimica Acta, 53, 1971, pp. 415-420.
60. J. C. de Wuilloud, R. G. Wuilloud, M. A. F. Silva, R. A. Olsina and L. D. Martinez, “Sensitive determination of mercury in tap water by cloud point extraction pre-concentration and flow injection-cold vapor-inductively coupled plasma optical emission spectrometry,” Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 2002, pp. 365-374.
61. B. M. W. Fong, T. S. Siu, J. S. K. Lee and S. Tam, “Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry,” Journal of Analytical Toxicology, 31, 2007, pp. 281-287.
62. S. Yoon, A. E. Albers, A. P. Wong and C. J. Chang, “Screening mercury levels in fish with a selective fluorescent chemosensor,” Journal of the American Chemical Society, 127, 2005, pp. 16030-16031.
63. V. Eschenfelder and R. Brossmer, “Synthesis of p-nitrophenyl 5-acetamido-3, 5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid, a chromogenic substrate for sialidases,” Carbohydrate Research, 162, 1987, pp. 294-297.
64. J. Rothermel and H. Faillard, “Phase-transfer-catalyzed synthesis of aryl α-ketosides of N-acetylneuraminic acid. A 2-methylfluoran-6-yl glycoside of N-acetylneuraminic acid, 2-methyl-6-(5-acetamido-3, 5-dideoxy-α-d-glycero-d-galacto-nonulopyranosyl-onic acid) xanthene-9-spiro-1′-isobenzofuran-3′-one, a new substrate for neuraminidase assay,” Carbohydrate Research, 196, 1990, pp. 29-40.
65. U. Dabrowski, H. Friebolin, R. Brossmer and M. Supp, “1H-NMR studies at N-acetyl-D-neuraminic acid ketosides for the determination of the anomeric configuration II,” Tetrahedron Letters, 20, 1979, pp. 4637-4640.
66. G. Scandurra, A. Antonella, C. Ciofi, G. Saitta and M. Lanza, “Electrochemical detection of p-aminophenol by flexible devices based on multi-wall carbon nanotubes dispersed in electrochemically modified nafion,” Sensors, 14, 2014, pp. 8926-8939.
67. M. Rochelet, S. Solanas, L. Betelli, B. Chantemesse, F. Vienney and A. Hartmann, “Rapid amperometric detection of Escherichia coli in wastewater by measuring β-D glucuronidase activity with disposable carbon sensors,” Analytica Chimica Acta, 892, 2015, pp. 160-166.
68. A. Gaskell, S. Crennell and G. Taylor, “The three domains of a bacterial sialidase: a β-propeller, an immunoglobulin module and a galactose-binding jelly-roll,” Structure, 3, 1995, pp. 1197-1205.
69. S. Ansari, H.P. Nepal, R. Gautam, S. Shrestha, P. Neopane, B. Rimal, F. Mandal, S. R. Ansari and M. L. Chapagain, “Childhood septicemia in Nepal: documenting the bacterial etiology and its susceptibility to antibiotics,” International Journal of Microbiology, 2014, pp. 2014.
70. C. T. Holzer, M. Itzstein, B. Jin, M. S. Pegg, W. P. Stewart and W. Y. Wu, “Inhibition of sialidases from viral, bacterial and mammalian sources by analogues of 2-deoxy-2, 3-didehydro-N-acetylneuraminic acid modified at the C-4 position,” Glycoconjugate Journal, 10, 1993, pp. 40-44.
71. M. von Itzstein, W. Y. Wu, G. B. Kok, M. S. Pegg, J. C. Dyason, B. Jin, T. Van Phan, M. L. Smythe, H. F. White and S. W. Oliver, “Rational design of potent sialidase-based inhibitors of influenza virus replication,” Nature, 363, 1993, pp. 418-423.
72. J. R. Fischer, D. E. Stallknecht, P. Luttrell, A. A. Dhondt and K. A. Converse, “Mycoplasmal conjunctivitis in wild songbirds: The spread of a new contagious disease in a mobile host population,” Emerging Infectious Diseases, 3, 1997, pp. 69.
73. K. Reinhart, M. Bauer, N. C. Riedemann and C. S. Hartog, “New approaches to sepsis: molecular diagnostics and biomarkers,” Clinical Microbiology Reviews, 25, 2012, pp. 609-634.
74. T. Inui, L. C. Walker, M. W. Dodds and A. B. Hanley, “Extracellular glycoside hydrolase activities in the human oral cavity,” Applied and Environmental Microbiology, 81, 2015, pp. 5471-5476.
75. A. L. Lewis and W. G. Lewis, “Host sialoglycans and bacterial sialidases: a mucosal perspective,” Cellular Microbiology, 14, 2012, pp. 1174-1182.
76. C. Li, B. Hu, J. Bian, J. Sun, W. Zhang, J. Liu, Y. Pan and C. Li, “Abrogation of neuraminidase reduces biofilm formation, capsule biosynthesis, and virulence of Porphyromonas gingivalis,” Infection and Immunity, 80, 2012, pp. 3-13.
77. S. Roy, K. Honma, C. I. Douglas, A. Sharma and G. P. Stafford, “Role of sialidase in glycoprotein utilization by Tannerella forsythia,” Microbiology, 157, 2011, pp. 3195-3202.
78. X. Luo and J. J. Davis, “Electrical biosensors and the label free detection of protein disease biomarkers,” Chemical Society Reviews, 42, 2013, pp. 5944-5962.
79. M. U. Ahmed, S. Nahar, M. Safavieha and M. Zourob, “Real-time electrochemical detection of pathogen DNA using electrostatic interaction of a redox probe,” Analyst, 138, 2013, pp. 907-915.
80. S. T. Huang, Y. X. Peng, K. L. Wang, “Synthesis of a new long-wavelength latent fluorimetric indicator for analytes determination in the DT-Diaphorase coupling dehydrogenase assay system,” Biosensors and Bioelectronics, 23, 2008, pp. 1793-1798.
81. Q. J. Ma, X. B. Zhang, X. H. Zhao, Z. Jin, G. J. Mao, G. L. Shen and R. Q. Yu, “A highly selective fluorescent probe for Hg 2+ based on a rhodamine–coumarin conjugate,” Analytica Chimica Acta, 663, 2010, pp. 85-90.
82. W. Lin, X. Cao, Y. Ding, L. Yuan and Q. Yu, “A reversible fluorescent Hg2+ chemosensor based on a receptor composed of a thiol atom and an alkene moiety for living cell fluorescence imaging,” Organic & Biomolecular Chemistry, 8, 2010, pp. 3618-3620.
83. L. Y. Chen, C. M. Ou, W. Y. Chen, C. C. Huang and H. T. Chang, “Synthesis of photoluminescent Au ND–PNIPAM hybrid microgel for the detection of Hg2+,” ACS Applied Materials & Interfaces,” 5, 2013, pp. 4383-4388.
84. J. Sherlock, J. Hislop, D. Newton, G. Topping and K. Whittle, “Elevation of mercury in human blood from controlled chronic ingestion of methylmercury in fish,” Human Toxicology, 3, 1984, pp. 117-131.
85. J. K. Virtanen, T. H. Rissanen, S. Voutilainen and T. P. Tuomainen, “Mercury as a risk factor for cardiovascular diseases,” The Journal of Nutritional Biochemistry, 18, 2007, pp. 75-85.
86. C. H. You, B. G. Kim, J. M. Kim, S. D. Yu, Y. M. Kim, R. B. Kim and Y. S. Hong, “Relationship between blood mercury concentration and waist-to-hip ratio in elderly Korean individuals living in coastal areas,” Journal of Preventive Medicine and Public Health, 44, 2011, pp. 218.
論文全文使用權限:同意授權於2017-08-08起公開