現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:溶膠凝膠法製備固態氧化物電解質材料Ce0.8Sm0.15R0.05O2–δ ( R = Sm、Ca、La)、Ce0.8Sm0.15Ca0.025Sr0.025O1.875及(La0.77Sr0.2Ba0.03)xCe1–xO2–δ ( x = 0.15、0.2)之性質研究 [以論文名稱查詢館藏系統]
論文英文名稱:Properties of Ce0.8Sm0.15R0.05O2–δ ( R = Sm, Ca, La), Ce0.8Sm0.15Ca0.025Sr0.025O1.875 and (La0.77Sr0.2Ba0.03)xCe1–xO2–δ ( x = 0.15, 0.2) electrolyte material by sol–gel [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:陳宛榆
英文姓名:Wan-Yu Chen
研究生學號:104788008
學位類別:碩士
語文別:中文
口試日期:2017/06/13
論文頁數:126
指導教授中文名:吳玉娟
指導教授英文名:Yu-Chuan Wu
口試委員中文名:雷健明;徐永富;洪逸明
中文關鍵詞:固態氧化物燃料電池氧化鈰基電解質共摻雜氧化鈰溶膠凝膠
英文關鍵詞:Solid oxide fuel cellCeria-based electrolyteCo–doped CeO2Sol–Gel
論文中文摘要:本研究成功利用溶膠凝膠法製備CeO2基之電解質材料,藉由摻雜Sm、Ca、La、Sr、Ba離子,製備Ce0.8Sm0.15R0.05O2–δ ( R = Sm、Ca、La)、 Ce0.8Sm0.15Ca0.025Sr0.025O1.875及(La0.77Sr0.2Ba0.03)xCe1–xO2–δ ( x = 0.15、0.2)粉末,藉由產生氧缺陷來進行氧離子傳遞,並幫助晶粒成長。燒結溫度為1300 °C並分別持溫2小時與4小時,與傳統固態合成法製備的粉末相比,燒結溫度大幅降低,利用XRD、SEM、拉曼光譜儀、直流電性、交流阻抗分析儀及熱機械分析儀等儀器,分析晶格常數、樣品表面形貌、密度、氧空缺、導電率、活化能、交流阻抗值及熱膨脹係數。持溫時間增加,平均晶粒尺寸也隨會之增加,摻雜Sm3+、Ca2+、La3+和共摻雜Ca2+及 Sm3+之樣品,其結果顯示CeO2摻雜 Ca2+有助於晶粒成長而摻雜Sm3+、La3+時會抑制晶粒成長。對電解質進行直流電性量測LSB15DC–4的試片在800 °C有最高導電值0.18 S/cm,其活化能為1.05 eV,而交流阻抗頻譜儀之分析量測導電率,在800 °C時S15CS05DC的材料有最高的導電率0.163 S/cm,且當量測溫度下降,導電性也成遞減的趨勢。
採用共壓法製備半電池後,再塗附上陰極La0.6Sr0.4Co0.2Fe0.8O3–δ,形成直徑為10 mm的全電池試片。對全電池試片進行電化學之分析,Cell C (6Ni–4SDC20/S15CS05DC/LSCF6428)在800 °C時最大功率密度高達714 mW/cm2,陽極厚度為1.09 mm、電解質厚度為175 μm和陰極厚度為63 μm,然而Cell B (6Ni–4SDC20/S15C05DC/LSCF6428)在600 °C 時有最高的開路電壓0.95 V。
論文英文摘要:In this study, the Ce0.8Sm0.15R0.05O2–δ ( R = Sm, Ca, La), Ce0.8Sm0.15Ca0.025Sr0.025O1.875 and (La0.77Sr0.2Ba0.03)xCe1–xO2–δ ( x = 0.15, 0.2) powers were synthesized by a sol-gel method , and then were prepared using a sintering temperature of 1300 °C for periods of 2 and 4 hours. The microstructures and electrical properties were then analyzed. The structural analysis reveals all sintered samples were fluorite-type ceria-based solid solutions. The grain size has a direct relation to the sintering time for co-doping of Sm3+, Ca2+ and La3+. Furthermore, it was found that while Ca2+ contributed to grain growth, Sm3+ and La3+ inhibited it. The measured conductivity increased with the temperature in a linear manner and reached approximately 0.18 S/cm at 800 °C for the 4 hour sintered LSB15DC sample.
The electrolyte powder and 6Ni–4SDC20 powders were co-pressed to form a bilayer structure and subsequently to co-sinter at 1300 °C for 4 h. La0.6Sr0.4Co0.2Fe0.8O3−δ slurry were squeeze printed onto the electrolyte films and sintered at 1200 °C for 1 h to form a single cell. Cell C (6Ni–4SDC20/S15CS05DC/LSCF6428) has a higher maximum power density of 714 mW / cm2 at 800 °C. The thicknesses in the anode, electrolyte, and cathode are 1.09 mm, 175 μm, and 63 μm, respectively.
論文目次:目錄
摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 x
第1章 緒論 1
1.1 前言 1
1.2 研究動機 2
第2章 文獻回顧 3
2.1 燃料電池的種類[2] 3
2.2 固態氧化物燃料電池歷史 4
2.3 固態氧化物燃料電池的優缺點 4
2.4 固態氧化物燃料電池的工作原理[6] 6
2.5 固態氧化物燃料電池的電解質粉末製備方法 7
2.6 固態氧化物燃料電池之電解質材料 12
2.7 固態氧化物燃料電池之電解質材料導電率 13
2.8 固態氧化物燃料電池陽極支撐型全電池量測 16
2.9 固態氧化物燃料電池之極化影響[13][25][26] 24
第3章 實驗方法與步驟 26
3.1 粉末合成 27
3.2 試片製備 29
3.3 漿料製備 33
3.4 X光繞射分析 33
3.5 相對密度分析 34
3.6 掃描式電子顯微鏡 35
3.7 拉曼光譜儀 36
3.8 電化學分析 36
3.9 交流阻抗頻譜分析 37
3.10 熱機械分析儀 38
第4章 結果與討論 40
4.1 XRD之分析 40
4.2 繞射峰值偏移與晶格常數之分析 44
4.3 相對密度之分析 48
4.4 顯微結構之分析 50
4.5 拉曼光譜之分析 57
4.6 直流電性量測之分析 59
4.7 交流阻抗頻譜之分析 70
4.8 燒結曲線之分析 87
4.9 熱膨脹係數之分析 89
4.10 全電池量測之分析 92
第5章 結論 115
第6章 參考文獻 116
第7章 附錄 122
論文參考文獻:[1] A. Maheshwari, H. D. Wiemhofera, “Sr2+–Gd3+ co-doped CeO2: A cost-effective variant for IT-SOFC electrolytes,” Ceramics International, 41 (2015) 9122–9130.
[2] 張寬裕,燃料電池原理、量測與建模,台北,鼎茂圖書出版股份有限公司,2010年。
[3] 肖鋼,燃料電池技術,全華圖書股份有限公司,2010年3月。
[4] Z. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. Zhan, S. A. Barnett, “A thermally self-sustained micro solid-oxide fuel-cell stack with high power density,” Nature, 435 (2005), 795–798.
[5] A. Weber, E. I. Tiffée, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications,” Journal of Power Sources, 127 (2004), 273–283.
[6] 李京展,LSCF–SCDC複合陰極的材料應用與性質分析之研究,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2016年。
[7] Y. C. Wu, C. C. Lin, “The microstructures and property analysis of aliovalent cations (Sm3+, Mg2+, Ca2+, Sr2+, Ba2+) co-doped ceria-base electrolytes after an aging treatment,” International Journal of Hydrogen Energy, 39 (2014), 7988–8001.
[8] C. Ding, T. Hashida, “Synthesis and evaluation of NiO–Ce0.8Sm0.2O1.9 nanocomposite powders for low-temperature solid oxide fuel cells,” International Journal of Hydrogen Energy, 36 (2011), 5567 –5573.
[9] S. Dikmen, H. Aslanbay, E. Dikmen, O. Sahin, “Hydrothermal preparation and electrochemical properties of Gd3+and Bi3+, Sm3+, La3+, and Nd3+ codoped ceria-based electrolytes for intermediate temperature-solid oxide fuel cell,” Journal of Power Sources, 195 (2010), 2488–2495.
[10] Z. Liu, D. Ding, M. Liu, X. Ding, D. Chen, X. Li, C. Xia, M. Liu, “High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures,” Journal of Power Sources, 241 (2013) , 454–459.
[11] M. R. Kosinski, R. T. Baker, “Preparation and property–performance relationships in samarium-doped ceria nanopowders for solid oxide fuel cell electrolytes,” Journal of Power Sources, 196 (2011), 2498–2512.
[12] 廖翊堯,Ce0.8Sm0.15R0.05O2–δ (R = Ca、Sr)電解質支撐型固態氧化物燃料電池製程之改良及微結構分析,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2015年。
[13] 韋文誠,燃料電池技術,台北,高立圖書有限公司,2013。
[14] D. Kashyap, P. K. Patro, R. K. Lenka, T. Mahata, P. K. Sinha, “Effects of Gd and Sr co-doping in CeO2 for electrolyte application in solid oxide fuel cell (SOFC),” Ceramics International, 40 (2014) , 11869–11875.
[15] 林駿杰,摻雜異價離子(Sm3+、Mg2+、Ca2+、Sr2+、Ba2+)之CeO2基電解質的微結構和性質之分析,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2012年。
[16] W. Zając, J. Molenda, “Electrical conductivity of doubly doped ceria,” Solid State Ionics, 179 (2008), 154–158.
[17] T. Mori, J. Drennan, Y. Wang, J. H. Lee, J.G. Li, T. Ikegamid, “Electrolytic Properties and Nanostructural Features in the La2O3-CeO2 System,” Journal of The Electrochemical Society, 150 (2003), A665–A673.
[18] M. Kahlaouin, S. Chefi, A. Inoubli, A. Madani, C. Chefi, “Synthesis and electrical properties of co-doping with La3+, Nd3+, Y3+,and Eu3+ citric acid-nitrate prepared samarium-doped ceria ceramics,” Ceramics International, 39 (2013), 3873–3879.
[19] M. Stojmenovic, S. Boskovic, M. Zunic, B. Babic, B. Matovic, D. B. Bogdanovic, S. Mentus,” Studies on structural, morphological and electrical properties of Ce1–xErxO2–δ (x = 0.05–0.20) as solid electrolyte for IT – SOFC,” Materials Chemistry and Physics, 153 (2015), 422–431.
[20] T. H. Hsieh, D. T. Ray, Y. P. Fu,” Co-precipitation synthesis and AC conductivity behavior of gadolinium-doped ceria,” Ceramics International, 39 (2013), 7967–7973.
[21] R. J. Yang, M. C. Lee, J. C. Chang, T. N. Lin, Y. C. Chang, W. X. Kao, L. S. Lee, S. W. Cheng, “ Fabrication and characterization of a Sm0.2Ce0.8O1.9 electrolyte film by the spin-coating method for a low-temperature anode-supported solid oxide fuel cells,” Journal of Power Sources, 206 (2012), 111– 118.
[22] H. Gu, R. Ran, W. Zhou, Z. Shao,” Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTA–citrate complexing synthesis process,” Journal of Power Sources, 172 (2007), 704–712.
[23] Z. Ning, Z. Milin, X. Fucheng, W. Cheng, L. Zhixiang, M. Zongqiang,” Fabrication and characterization of anode support low-temperature solid oxide fuel cell based on the samaria-doped ceria electrolyte,” International Journal of Hydrogen Energy, 37 (2012), 797–801.
[24] Y. J. Leng, S. H. Chan, S. P. Jiang, K. A. Khor, “ Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction,” Solid State Ionics, 170 (2004), 9–15.
[25] 黃鎮江,燃料電池,台北,滄海書局,2008。
[26] S. B. Adler, “Sources of cell and electrode polarisation losses in SOFCs,” Fundamentals, Design and Applications, in High-Temperature Solid Oxide Fuel Cells for the 21st Century (Second Edition) (2016), 357–381
[27] 李明翰,摻雜異價離子(Sm3+、Ca2+ )對CeO2 基電解質的顯微結構和性質之分析,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2010年。
[28] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides,” Acta Cryst, A32 (1976), 751–767.
[29] M. Kahlaoui, A. Inoubli, S. Chefi, A. Kouki, A. Madania, C. Chefi, “Electrochemical and structural study of Ce0.8Sm0.2–xLaxO1.9 electrolyte materials for SOFC,” Ceramics International, 39 (2013), 6175–6182.
[30] B. Choudhury, P. Chetri, A. Choudhury, “Oxygen defects and formation of Ce3+ affecting the photocatalytic performance of CeO2 nanoparticles,” Royal Society of Chemistry 4 (2014), 4663–4671.
[31] H. Yahiro, K. Eguchi, H. Arai, “Electrical properties and reducibilities of ceria-rare earth oxide ststems and their application to solid oxide fuel cell,” Solid Sata Ionics, 36 (1989), 71–75.
[32] S. Ramesh, K. C. James Raju,“ Preparation and characterization of Ce1−x(Gd0.5Pr0.5)xO2 electrolyte for IT-SOFCs,” International Journal of Hydrogen Energy, 37 (2012), 10311–10317.
[33] 李明晉,LSGM-SDC複合電解質的微結構及電性之探討,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2015。
[34] Y. C. Wu, M. J. Lee, X. Li, “ Analysis of microstructure and physical properties of La0.85Sr0.15Ga0.8Mg0.2O2.825 and Ce0.85Sm0.15O1.925 composite electrolytes used in solid oxide fuel cells,” Journal of the European Ceramic Society, 35 (2015), 4485–4495.
[35] R. O. Fuentes, R. T. Baker, “ Synthesis and properties of Gadolinium-doped ceria solid solutions for IT-SOFC electrolytes,” International Journal of Hydrogen Energ, 33 (2008), 3480–3484.
[36] Y. C. Wu, M. Z. Lee, “ Properties and microstructural analysis of La1−xSrxGa1−yMgyO3−δ solid electrolyte ceramic,” Ceramics International, 39 (2013), 9331–9341.
[37] N. Singh, N. K. Singh, D. Kumar, O. Parkash, “ Effect of co-doping of Mg and La on conductivity of ceria,” Journal of Alloys and Compounds, 519 129–135 (2012).
[38] A. Bieberle-Hütter, M. Søgaard, H. L. Tuller, “Electrical and electrochemical characterization of microstructured thin film La1−xSrxCoO3 electrodes,” Solid State Ionics 177 1969–1975 (2006).
[39] M. J. Escudero, A. Aguadero, J. A. Alonso, L. Daza, “A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy,” J. Electroanal. Chem. 611 107–116 (2007).
[40] M. J. Escudero, A. Aguadero, J. A. Alonso, L. Daza, “A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy,”Journal of Electroanalytical Chemistry, 611 (2007), 107–116.
[41] T. H. Hsieh, D. T. Ray, Y. P. Fu, “Co-precipitation synthesisandACconductivitybehavior of gadolinium-dopedceria,”Ceramics International, 39 (2013), 7967–7973.
[42] J. Jacob, R. Baurin, “One step synthesis and conductivity of alkaline and rare earth co-doped nanocrystalline CeO2 electrolytes,”Ceramics International, 41 (2015), 6299–6305.
[43] X. Lin, Q. Lu, L. Zhu, X. Liu, “Synthesis and characterization of Ce0.8Sm0.2–xPrxO2–δ(x=0.02–0.08) solid electrolyte materials,”Journal of Rare Earths, 33 (2015), 411–416.
[44] Y. Zheng, M. Zhou, L. Ge, S. Li, H. Chen, L. Guo, “Effect of Dy on the properties of Sm-doped ceria electrolyte for IT-SOFCs,” Journal of Alloys and Compounds, 509 (2011), 1244–1248.
[45] Y. Zheng, Y. Shi, H. Gu, L. Gao, H. Chen, L. Guo, “La and Ca co-doped ceria-based electrolyte materials for IT-SOFCs,”Materials Research Bulletin, 44 (2009), 1717–1721.
[46] X. C. Lu, J. H. Zhu, “Effect of Sr and Mg Doping on the Property and Performance La1–xSrxGa1–yMgyO3–δ Electrolyte,” Journal of The Electrochemical Society, 155 (2008), 494–503.
[47] P. Datta, P. Majewski, F. Aldinger, “Structural studies of Sr and Mg–doped LaGaO3,” Journal of Alloys and Compounds, 438 (2007), 232–237.
[48] S. F. Wang, C. T. Yeh, Y. R. Wang, Y. F. Hsu, “Effects of (LaSr)(CoFeCu)O3-δ cathodes on the characteristics of intermediate temperature solid oxide fuel cells,” Journal of Power Sources, 201 (2012), 18–25.
[49] S. W. Cheng, C. H. Tsai, S. H. Wu, C. K. Liu, Y. N. Cheng, R. Y. Lee, “Effects of reduction process on the electrochemical and microstructural properties for electrolyte supported SOFC,” International Journal of Hydrogen Energy, 40 (2015), 1534–1540.
[50] Y. C. Wu, Y. Y. Liao, “Effect of Ca2+ and Sr2+ doping on the microstructure and cell performance of samaria-doped ceria electrolytes used in solid oxide fuel cells,” International Journal of Hydrogen Energy, 41 (2016), 13591–13602.
論文全文使用權限:同意授權於2022-08-03起公開