現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:專利品質分析與評估-以智慧車專利為例 [以論文名稱查詢館藏系統]
論文英文名稱:Patent Quality Analysis and Evaluation - A Case Study of Intelligent Vehicle Patents [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:管理學院
系所名稱:資訊與財金管理系碩士班
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:羅珊
英文姓名:Shan Lo
研究生學號:104AB8003
學位類別:碩士
語文別:中文
論文頁數:51
指導教授中文名:翁頌舜
指導教授英文名:Sung-Shun Weng
口試委員中文名:林宜隆;吳瑞堯
中文關鍵詞:智慧車產業專利探勘專利品質支持向量機
英文關鍵詞:Intelligent Vehicle IndustryPatent MiningPatent QualitySupport Vector Machine
論文中文摘要:智慧車產業每年專利申請件仍然持續增加,而專利品質為專利價值的前提,攸關企業是否持續投入資金以維護該專利,為此,專利品質日益受到重視。但目前對於專利品質的評估依舊以專家人工評估為主,過去的研究也較少將專利品質評估的預測概念運用於專利分析上,因此識別專利品質高低與評估專利品質的技術為本研究之重點。
本研究透過逐步回歸分析法篩選出關鍵專利品質指標,搭配自我組織映射圖識別出專利品質群組狀況與分數,運用支持向量機建立專利品質評估模型,最後進行智慧車專利分析。研究結果顯示,本研究所運用之模型可以識別出專利品質群組與品質高低,而品質評估模型F-值皆高於0.9,顯示本研究所運用之方法可以達到很好的準確率,最終分析出高品質智慧車專利之專利權人以及其主要技術分佈狀況。
論文英文摘要:With the continuous increase of patent applications in intelligent vehicle industry, while the patent quality is the premise of the patent value, and which related to whether the enterprise continues to invest in maintaining the patents. However, the evaluation of patent quality is still based on expert evaluation at present. Most of the previous studies seldom applied the concept of prediction on patent quality evaluation analysis, thus the key point of this study is focused on how to identify the patent quality and build the evaluation model of patent quality.
In this research, key indicators of patent quality were filtered by stepwise regression analysis, and the quality status and scores of patent quality groups were identified by using self-organizing map. Then, we used the support vector machine algorithm to create a patent quality model and analyze the patent quality. The results show that the model can identify the quality of the patent group, quality level, and the model of F-Measure is higher than 0.9, indicating that this method can achieve good accuracy. Finally, this study analyzes the assignee of high quality intelligent vehicle patents and their core technical distribution.
論文目次:摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究流程 5
第二章 文獻探討 7
2.1 智慧車產業分析 7
2.1.1 智慧車產業概述 7
2.1.2 智慧車之主要技術 9
2.2 專利分析、專利品質與品質指標之相關研究 11
2.2.1 專利分析 13
2.2.2 專利品質與專利品質指標 14
2.3 專利探勘之相關研究 19
2.3.1專利分群分析相關研究 19
2.3.2 專利分類分析相關研究 21
第三章 研究方法 23
3.1 研究架構 23
3.2 資料蒐集與專利品質指標提取 24
3.2.1 資料蒐集 24
3.2.2 專利品質指標提取 26
3.3 關鍵專利品質指標提取 27
3.4 專利品質分群識別與建立評估模型 27
3.4.1 自我組織映射圖建立分群組數與計算群組分數 27
3.4.2 支持向量機建立專利品質評估模型 29
第四章 實驗結果分析與討論 31
4.1 實驗環境 31
4.2 實驗數據收集與前置處理 31
4.3 實驗評估方法 33
4.4 實驗結果與討論 34
4.4.1 關鍵專利品質指標篩選 34
4.4.2 專利品質分群 35
4.4.3 專利品質評估模型 37
4.4.4 專利品質分析 39
第五章 結論 45
5.1 研究結論與貢獻 45
5.2 研究限制與未來展望 46
參考文獻 47
論文參考文獻:1. 專利品質定義,MBA智庫百科
http://wiki.mbalib.com/zh-tw/%E4%B8%93%E5%88%A9%E5%93%81%E8%B4%A8,2016。
2. Business Insider, 10 million self-driving cars will be on the road by 2020 http://www.businessinsider.com/report-10-million-self-driving-cars-will-be-on-the-road-by-2020-2015-5-6,2016。
3. Business Insider, 30 companies are now making self-driving cars
http://uk.businessinsider.com/30-companies-are-now-making-self-driving-cars-2016-4,2016。
4. Transparency Market Research, Connected car market-Global Industry analysis, size, share, growth, trends and forecast 2013-2019 http://www.transparencymarketresearch.com/connected-car.html,2013。
5. WIPO PatentScope https://patentscope.wipo.int/search/en/search.jsf 。
6. 美國專利商標局https://www.uspto.gov/。
7. 歐洲專利局https://worldwide.espacenet.com/。
8. 日本專利局https://www.jpo.go.jp/。
9. 台灣智慧財產局https://www.tipo.gov.tw/mp.asp?mp=1。
10. Thomson Innovation資料庫http://info.thomsoninnovation.com/。
11. 科技產業資訊室 - WIPO公布2014申請PCT國際專利21.5萬件,中國華為排名第一 http://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=10892,2015。
12. 科技產業資訊室-專利價值盤點雷達圖http://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=3465,2008。
13. 科技政策觀點專利價值=品質?高專利之展望http://portal.stpi.narl.org.tw/index/article/10257,,2016。
14. 車聯網技術持續進展 衍生多元創新應用 http://www.digitimes.com.tw/iot/article.asp?cat=158&id=0000450596_yh14v3n4l315uk52yto2c,2015。
15. 周延鵬(2006)。虎與狐的智慧力: 智慧資源規劃 9 把金鑰。遠見天下文化出版股份有限公司。
16. 鄭雯隆(2014)。汽車與車電市場2015年回顧與2016年展望。拓墣產業研究所焦點報告。
17. 蕭瑞聖(2014)。人性化與智慧華汽車電子正夯 美日德三強爭雄。中時新聞。
18. 馮道亨、李文騫、林富泰與宋威廷(2015)。車聯網發展趨勢分析。中華技術,第107期。
19. Abbas, A., Zhang, L., & Khan, S. U. (2014). A literature review on the state-of-the-art in patent analysis. World Patent Information, 37, 3-13.
20. Allison, J. R., & Mann, R. J. (2007). Disputed Quality of Software Patents, The. Wash. UL Rev., 85, 297.
21. Allison, J. R., Lemley, M. A., Moore, K. A., & Trunkey, R. D. (2003). Valuable patents. Geo. Lj, 92, 435.
22. Bouhouche, S., Yahi, M., & Bast, J. (2011). Combined use of principal component analysis and self organisation map for condition monitoring in pickling process. Applied Soft Computing, 11(3), 3075-3082.
23. Breitzman, A. F., & Mogee, M. E. (2002). The many applications of patent analysis. Journal of Information Science, 28(3), 187-205.
24. Brügmann, S., Bouayad-Agha, N., Burga, A., Carrascosa, S., Ciaramella, A., Ciaramella, M., ... & Müller, A. (2015). Towards content-oriented patent document processing: Intelligent patent analysis and summarization. World Patent Information, 40, 30-42.
25. Chen, Y. S., & Chang, K. C. (2010). The relationship between a firms patent quality and its market value—the case of US pharmaceutical industry. Technological Forecasting and Social Change, 77(1), 20-33.
26. Dang, J., & Motohashi, K. (2015). Patent statistics: A good indicator for innovation in China? Patent subsidy program impacts on patent quality. China Economic Review, 35, 137-155.
27. de Saint-Georges, M., & de la Potterie, B. V. P. (2013). A quality index for patent systems. Research policy, 42(3), 704-719.
28. Ercan, S., & Kayakutlu, G. (2014). Patent value analysis using support vector machines. Soft computing, 18(2), 313-328.
29. Ernst, H. (1998). Patent portfolios for strategic R&D planning. Journal of Engineering and Technology Management, 15(4), 279-308.
30. Fall, C. J., Törcsvári, A., Benzineb, K., & Karetka, G. (2003, April). Automated categorization in the international patent classification. In ACM SIGIR Forum(Vol. 37, No. 1, pp. 10-25). ACM.
31. Fall, C. J., Törcsvári, A., Fiévet, P., & Karetka, G. (2004). Automated categorization of German-language patent documents. Expert Systems with Applications, 26(2), 269-277.
32. Fan, C. Y., Lai, M. F., Huang, T. Y., & Huang, C. M. (2011, December). Applying K-means clustering and technology map in Asia Pacific-semiconductors industry analysis. In Industrial Engineering and Engineering Management (IEEM), 2011 IEEE International Conference on (pp. 1043-1047). IEEE.
33. Fleisher, C. S., & Bensoussan, B. E. (2003). Strategic and competitive analysis: methods and techniques for analyzing business competition (p. 457). Upper Saddle River, NJ: Prentice Hall.
34. Harhoff, D., Scherer, F. M., & Vopel, K. (2003). Citations, family size, opposition and the value of patent rights. Research policy, 32(8), 1343-1363.
35. Hsueh, C. C., & Chen, D. Z. (2015). A taxonomy of patent strategies in Taiwans small and medium innovative enterprises. Technological Forecasting and Social Change, 92, 84-98.
36. Jeong, C., & Kim, K. (2014). Creating patents on the new technology using analogy-based patent mining. Expert Systems with Applications, 41(8), 3605-3614.
37. Juntunen, P., Liukkonen, M., Lehtola, M., & Hiltunen, Y. (2013). Cluster analysis by self-organizing maps: An application to the modelling of water quality in a treatment process. Applied Soft Computing, 13(7), 3191-3196.
38. Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and psychological measurement.
39. Kim, Y. G., Suh, J. H., & Park, S. C. (2008). Visualization of patent analysis for emerging technology. Expert Systems with Applications, 34(3), 1804-1812.
40. Klemperer, P. (1990). How broad should the scope of patent protection be?. The RAND Journal of Economics, 113-130.
41. Lai, Y. H., & Che, H. C. (2009). Modeling patent legal value by Extension Neural Network. Expert Systems with Applications, 36(7), 10520-10528.
42. Lanjouw, J. O., & Schankerman, M. (1999). The quality of ideas: measuring innovation with multiple indicators (No. w7345). National bureau of economic research.
43. Lanjouw, J. O., & Schankerman, M. (2001). Characteristics of patent litigation: a window on competition. RAND journal of economics, 129-151.
44. Lanjouw, J. O., & Schankerman, M. (2004). Patent quality and research productivity: Measuring innovation with multiple indicators. The Economic Journal, 114(495), 441-465.
45. List, J. (2010). An A to X of patent citations for searching. World Patent Information, 32(4), 306-312.
46. Malackowski, J. E., & Barney, J. A. (2008). What is patent quality--a merchant bancs perspective. Nouvelles-Journal of the Licensing Executives Society, 43(2), 123.
47. Nair, S. S., Mathew, M., & Nag, D. (2011). Dynamics between patent latent variables and patent price. Technovation, 31(12), 648-654.
48. Narin, F. (1994). Patent bibliometrics. Scientometrics, 30(1), 147-155.
49. Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between US technology and public science. Research policy, 26(3), 317-330.
50. Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572.
51. Segev, A., & Kantola, J. (2012). Identification of trends from patents using self-organizing maps. Expert Systems with Applications, 39(18), 13235-13242.
52. Sheau-Pyng, J., Ming-Fong, L., & Chin-Yuan, F. (2012). Using patent analysis to analyze the technological developments of virtualization. Procedia-Social and Behavioral Sciences, 57, 146-154.
53. Su, H. N., Kang, C. W., Lin, J. Y., Wu, Y. H., Lee, M., & Lee, P. C. (2013, May). How to Innovate Intellectual Property Service by Prediction of Infringement Probability. In Service Science and Innovation (ICSSI), 2013 Fifth International Conference on (pp. 186-192). IEEE.
54. Trajtenberg, M. (1990). A penny for your quotes: patent citations and the value of innovations. The Rand Journal of Economics, 172-187.
55. Trappey, A. J., Trappey, C. V., Wu, C. Y., & Lin, C. W. (2012). A patent quality analysis for innovative technology and product development. Advanced Engineering Informatics, 26(1), 26-34.
56. Trappey, A. J., Trappey, C. V., Wu, C. Y., Fan, C. Y., & Lin, Y. L. (2013). Intelligent patent recommendation system for innovative design collaboration. Journal of Network and Computer Applications, 36(6), 1441-1450.
57. Trappey, C. V., Wu, H. Y., Taghaboni-Dutta, F., & Trappey, A. J. (2011). Using patent data for technology forecasting: China RFID patent analysis. Advanced Engineering Informatics, 25(1), 53-64.
58. Tsao, C. C., Fan, C. Y., & Chang, P. C. (2015, October). A patent quality classification model based on artificial immune system. In Proceedings of the ASE BigData & SocialInformatics 2015 (p. 45). ACM.
59. Venugopalan, S., & Rai, V. (2015). Topic based classification and pattern identification in patents. Technological Forecasting and Social Change, 94, 236-250.
60. Visiongain (2016/3/16), Automotive Advanced Driver Assistance Systems (ADAS) Market Report 2016-2026: Forecasts & Analysis of the Evolution Towards Autonomous, Self-Driving & Driverless Cars.
61. Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1-3), 37-52.
62. Wu, C. H., Ken, Y., & Huang, T. (2010). Patent classification system using a new hybrid genetic algorithm support vector machine. Applied Soft Computing, 10(4), 1164-1177.
63. Yoon, J., & Kim, K. (2012). TrendPerceptor: A property–function based technology intelligence system for identifying technology trends from patents. Expert Systems with Applications, 39(3), 2927-2938.
64. Yu, W. D., & Lo, S. S. (2009). Patent analysis-based fuzzy inference system for technological strategy planning. Automation in Construction, 18(6), 770-776.
65. Zhang, L., Li, L., & Li, T. (2015). Patent mining: A survey. ACM SIGKDD Explorations Newsletter, 16(2), 1-19.
論文全文使用權限:不同意授權