現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:Ce0.8Sm0.15R0.05O2-δ (R = Sm、Ca、Sr、Mg)與LSGM1520的複合電解質之顯微結構和性質分析 [以論文名稱查詢館藏系統]
論文英文名稱:The microstructure and property analysis of Ce0.8Sm0.15R0.05O2-δ (R = Sm, Ca, Sr, Mg)-LSGM composite electrolytes [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:林秉遠
英文姓名:Bing-Yuan Lin
研究生學號:101788040
學位類別:碩士
語文別:中文
口試日期:2017/05/12
論文頁數:153
指導教授中文名:吳玉娟
口試委員中文名:吳玉娟;許志雄;邱德威;徐永富;雷健明
中文關鍵詞:固態反應法複合電解質螢石結構
英文關鍵詞:Solid state reactionComposite electrolyteFluorite structure
論文中文摘要:本研究利用固態反應法製備中溫型固態氧化物電解質。本研究分為兩個主軸。首先選用研究指出導電性良好的配比Ce0.8Sm0.15R0.05O2-δ(R = Sm、Ca、Sr、Mg、Ba),在不同燒結溫度對性質的改變。另一個主軸則選擇Ce0.8Sm0.15R0.05O2-δ (R = Sm、Mg、Sr、Ca)與La0.85Sr0.15Ga0.8Mg0.2O3-δ製備複合電解質,並在不同燒結溫度對電性與微結構的影響。探討電解質試片的電性與微結構的關係,利用XRD、TMA、SEM、拉曼光譜儀、直流電性及交流阻抗和電化學工作站等儀器,分析試片的晶體結構、顯微結構和離子傳導性。結果顯示SMDC-1550和SBDC-1550試片觀察到MgO和BaCeO3相。複合電解質經XRD分析未偵測到LSGM相,EDS分析偵測到晶粒含有少量La、Sr、Ga元素。電性結果顯示SCDC-1550和95S05L-1450試片在大氣下800°C,導電率分別為0.06 S/cm和0.048 S/cm;95S05L-1450的全電池功率密度245 mW/cm2 (800°C),和其OCV為0.73 V。
論文英文摘要:In this study, we prepared intermediate temperature solid fuel cell (IT-SOFC) electrolyte by solid state reaction method. This study is divide two systems. The stoichiometric Ce0.8Sm0.15R0.05O1.875 (R = Mg, Ca, Sr, Ba) specimens sintered at different temperature, and Ce0.8Sm0.15R0.05O1.875 (R = Sm, Mg, Ca, Sr) - La0.85Sr0.15Ga0.8Mg0.2O3-δ composite electrolytes sintered at different temperature. the two systems had studied correlations between sintered temperature and properties by XRD, SEM, TMA, Raman and conductivity
The results showed that MgO and BaCeO3 were produced from SMDC-1550 and SBDC-1550 specimens by SEM. The composite electrolytes were not observed LSGM phase by XRD, and EDS analysis detects a small amount of La, Sr, Ga element in the grain. The conductivity of 95S05L-1450 and SCDC-1550 specimens were higher, approximately 0.049 S/cm and 0.061 S/cm at 800°C in the air. The power density of 95S05L-1450 is 245 mW/cm2 at 800°C,and the OCV is 0.73 V at 800°C.
論文目次:目錄

中文摘要 i
英文摘要 ii
致謝 iv
目錄 vi
表目錄 ix
圖目錄 ixi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
第二章 文獻回顧 3
2.1 燃料電池的簡介 3
2.2 固態氧化物燃料電池 3
2.2.1 固態氧化物燃料電池之簡介 3
2.2.2 固態氧化物燃料電池之材料需求 5
2.3 固態氧化物燃料電池之電解質 6
2.3.1 電解質之基本工作原理及種類 6
2.3.2 LaGaO3基電解質 7
2.3.3 氧化鈰基電解質 9
2.4 複合電解質材料 12
第三章 實驗方法及步驟 17
3.1 試片製備 17
3.1.1 共摻雜的CeO2基電解質試片製備 17
3.1.2 複合電解質試片製備 18
3.1.3 全電池試片製備 20
3.2 X-ray繞射分析 21
3.3 熱機械分析儀之燒結曲線分析 21
3.4 相對密度量測 22
3.5 掃描式電顯微鏡分析 23
3.6 熱機械分析儀之熱膨脹分析 23
3.7 拉曼光譜分析 24
3.8 直流電性分析 24
3.9 交流阻抗頻譜分析 24
3.10 全電池分析 25
第四章 結果與討論 26
4.1 第一部分:共摻雜的CeO2基電解質 26
4.1.1 XRD相結構分析 26
4.1.2 晶格常數分析 30
4.1.3 燒結曲線分析 33
4.1.4 相對密度分析 36
4.1.5 SEM表面分析 38
4.1.6 熱膨脹分析 48
4.1.7 拉曼光譜分析 51
4.1.8 直流電性分析 54
4.1.9 交流阻抗頻譜分析 59
4.2 第二部分:複合電解質 78
4.2.1 XRD相結構分析 78
4.2.2 晶格常數分析 81
第五章 結論 140
參考文獻 141
附錄 146
JCPDS卡號 146
論文參考文獻:參考文獻

[1] W. Surdoval “SECA Overview”, SECA 2003(http://www.netl.doe.gov).
[2] W. Nernst, W. Wild, Zeitschrift fur Elektrochemie, 1900-12-20.
[3] E. Bauer, H. Preis, Zeitschrift fur Elektrochemie, 1937.
[4] M. Minh,T. Takahashi, Science and technology of ceramic fuel cell, Elsevier Science B.V., 1995.
[5] V.V. Kharton, F.M.B. Marques, A. Atkinson, “Transport Properties of Solid Oxide Electrolyte Ceramics: a Brief Review”, Solid State Ionics, 2004, 174, 135-149.
[6] 韋文誠,固態燃料電池技術,台北,高立圖書有限公司,2013。
[7] T. Ishihara, H. Matsuda, Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor”, Journal of the American Chemical Society, 1994, B116, 3801-3803.
[8] M. S. Khan, M. S. Islam, “Dopant substitution and ion Migration in the LaGaO3-Based Oxygen Ion Conductor”, Journal of American Chemical Society, 1998, B102, 3099-3104.
[9] T. Ishihara, “Development of new fast oxide ion conductor and application for intermediate temperature solid oxide fuel cell”, The Chemical Society of Japan, 2006, 79, 1155-1166.
[10] N. Liu, M. Shi, C. Mang, Y. P. Yuan, “Microstructure and ionic conductivity of Sr-and Mg-doped LaGaO3”, Journal of Materials Science, 2006, 41, 4205-4213.
[11] P. R. Slater, J. T. S. Irvine,T. Ishihara, Y. Takita, “The Structure of oxide ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.83 by powder neutron diffraction”, Solid State Ionics, 1998 ,107, 319-323.
[12] 衣寶蓮,燃料電池-原理與運用,台北,五南書局,2007。
[13] H. Yahiro, T. Ohuchi, K. Eguchi, H. Arai, “Electrical properties and microstructure in the system ceria-alkaline earth oxide”, Journal of Materials Science, 1988, 23, 1036-1041.
[14] Y. P. Fu, S. H. Chen, J. J. Huang, “Preparation and characterization of Ce0.8M0.2O2- (M = Y, Gd, Sm, Nd, La) solid electrolyte materials for solid oxide fuel cells”, International Journal of Hydrogen Energy, 2010, 35, 745-752.
[15] Y. C. Wu, C. C. Lin, “The microstructures and property analysis of aliovalent cations (Sm3+, Mg2+, Ca2+, Sr2+, Ba2+) co-doped ceria-base electrolytes after an aging treatment”, International Journal of Hydrogen Energy, 2014, 39, 7988-8001.
[16] Z. Bi, M. Cheng, Y. Dong, H. Wu, Y. She, B. Yi, “Electrochemical evaluation of La0.6Sr0.4CoO3-La0.45Ce0.55O2 composite cathodes for anode-supported La0.45Ce0.55O2-La0.9Sr0.1Ga0.8Mg0.2O2.85 bilayer electrolyte solid oxide fuel cells”, Solid State Ionics, 2005, 176, 655-661.
[17] S. Zha, C. Xia, G. Meng, “Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells”, Journal Power Sources, 2003, 115, 44-48.
[18] A. Mineshige, T. Yasui, N. Ohmura, M. Kobune, S. Fujii, M. Inaba, “Oxygen chemical potential and mixed conduction in doped ceria under influence of oxygen partial pressure gradient”, Solid State Ionics, 2002, 152, 493-8.
[19] S. G. Kim, S. P. Yoon, S. W. Nam, S. H. Hyun, S. A. Hong, “Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method”, Journal Power Sources, 2002, 110, 222-228.
[20] D. Xu, X. Liu, D. Wang, G. Yi a, Y. Gao, “Fabrication and characterization of SDC–LSGM composite electrolytes material in IT-SOFCs”, Journal of Alloys and Compounds, 2007, 429, 292–295.
[21] G. Hao, X. Liu, H. Wang, H. Be, L. Pei, W. Su, “Performance of Ce0.85Sm0.15O1.9-La0.9Sr0.1Ga0.8Mg0.2O2.85 composite electrolytes for intermediate temperature solid oxide fuel cells”, Solid State Ionics, 2012, 255, 81-84.
[22] B. Li, S. Liu, X. Liu, G. Hao, H. Wan, W. Su, “Study on GDC-LSGM composite electrolytes for intermediate-temperature solid oxide fuel cells”, International Journal of Hydrogen Energy, 2013, 38, II392-II397.
[23] R.D. Shannon, “Revised effective ionic radii and systematic studiies of interatomic distances in halides and chalcogenides”, Acta Crystallographica, 1976, A32, 751-767.
[24] H. Özdemir, V. Sarıboga, M. Öksüzömer, M. Gürkaynak, “Preparation and characterization of Ca-Sm-Ce mixed oxides via cellulose templating method for solid oxide fuel cell applications”, Journal of Power Sources, 2012, 219, 155-162.
[25] A.Moure , C.Moure, J. Tartaj, “A significant improvement of the processing and electric properties of CeO2 co-doped with Ca and Sr by mechanosynthesis”, Journal of Power Sources, 2011, 196, 10543-10549.
[26] M. Chen, B. H. Kim, Q. Xu, O. J. Nam, J. h. Ko, “Synthesis and performances of Ni-SDC cermets for IT-SOFC anode”, Journal of European Ceramic Society, 2008, 28, 2947-2953.
[27] L. W. Tai, M. M. Nasrallah, H. U. Anderson, D.M. Sparlin, S. R. Sehin, “Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3”, Solid state ionic, 1995, 76, 259-271.
[28] J. R. McBirde, K. C. Hass, B. D. Poindexter, W. H. Weber. “Raman and x-ray studies of Ce1-xRexO2-, where Re = La, Pr, Nd, Eu, Gd, Tb”, Journal of Applied Physic, 1994, 76, 2435.
[29] Z. D. Dohcevic-Mitrovic, M. J. Scepanovic, M. U. Grujic-Brojcin, Z.V. Popovic, S. B. Boskovic. B. M. Matovic, M. V. Zinkevich, F. Aldinger, “The size and strain effects on the Raman spectra of Ce1-xNdxO2 (0[30] B. Li, X. Wei, W. Pan, “Improved electrical conductivity of Ce0.9Gd0.1O1.95 and Ce0.9Sm0.1O1.95 by co-doping”, International Journal of Hydrogen Energy, 2010, 357, 3018-3022.
[31] R.K. Lenka, T. Mahata, A.K. Tyagi, P.K. Sinha, “Influence of grain size on the bulk and grain boundary ion conduction behavior in gadolinia-doped ceria”, Solid State Ionics, 2010, 181, 262–267.
[32] C. J. Zheng, H. L. Zhao, S. Y. Zhai, “Electrical conduction behaior of proton conductor BaCe1-xSmxO3- in the intermediate temperature range”, International Journal of Hydrogen Energy, 2011, 36, 3649-3657.
[33] S. Ramesh, K. C. James Raju, “Preparation and characterization of Ce1-x(Gd0.5Pr0.5)xO2) electrolyte for IT-SOFCs”, International of Hydrogen Energy, 2012, 37, 10311-10317.
[34] D. Kashyap, P. K. Patro, R. K. Lenka, T. Mahata, P. K. Sinha, “Effects of Gd and Sr co-doping in CeO2 for electrolyte application in solid oxide fuel cell(SOFC)”, Ceramics International, 2014, 40, 11869-11875.
[35] Z. Zhan, T. Wen, H. Tu, Z.i Lu, “AC Impedance Investigation of Samarium-Doped Ceria”, Journal of The Electrochemical Society, 2001, 148(5), A427-A432.
[36] J. R. Macdonald, Impedance spectroscopy emphasizing solid materials and systems, New York, p20-22.
[37] X. Guo, “Physical origin of the intrinsic grain-boundary resistivity of stabilized-zirconia: Role of the space-charge layers”, Solid State Ionics, 1995, 81, 235-242.
[38] J. Milewski, K. Swirski, M. Santarelli, P. Leone, “Advanced methods of solid oxide fuel cell modeling”, Green Energy and Technology, 2014, 40, pp.1-12.
[39] S. F. Wang, C. T. Yeh, Y. R. Wang, Y. F. Hsu, “Effects of (LaSr)(CoFeCu)O3- cathodes on the chararcteristics of intermediate temperature solid oxide fuel cells”, Journal of Powder Source, 2012, 201, 18-25.
[40] I. Kivi, I. Drovtar, E. Anderson, J. Arivali, Tammc, N. Gunnar, et al. “Influence of cathode thickness on the oxygen reduction kinertics at the intermediate temperature SOFC cathodes”, ECS Transactions, 2011, 35, 2349-2355.
[41] W. Gong, S. Gopalan, U. B. Pal, “Perfomance of intermediate temperature (600 ~ 800°C) soild oxide fuel cell based on Sr and Mg doped lanthanum-gallate electrolyte”, Journal of Power Sources, 2006, 160(1), 305-315.
[42] 廖翊堯,Ce0.8Sm0.15R0.05O2- (R = Ca、Sr)電解質支撐型固態氧化物燃料電池製程之改良及微結構分析,國立台北科技大學材料科學與工程研究所碩士班,台北,2015。
論文全文使用權限:同意授權於2022-05-25起公開