現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:改良鉻-二氧化矽五層對稱結構增強其廣波域且廣角度之光吸收特性 [以論文名稱查詢館藏系統]
論文英文名稱:Improved chromium-silicon dioxide five-layered symmetrical structure for broadband and wide angle light absorption [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:105
畢業學期:第一學期
中文姓名:陳作魁
英文姓名:Tso-Kuei Chen
研究生學號:103658034
學位類別:碩士
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen
口試委員中文名:蔡定平;李正中;鄭鈺潔
中文關鍵詞:等效導納等效折射率破壞性干涉導納匹配
英文關鍵詞:equivalent refractive indexequivalent admittancedestructive interferenceadmittance matching
論文中文摘要:本研究使用對稱膜堆理論,設計“二氧化矽-鉻-二氧化矽-鉻-二氧化矽”交替堆疊之對稱型層狀結構吸收器,金屬-介質對稱膜堆可等效成一超穎材料,其等效導納與等效折射率可分開設計,等效導納主導膜層介面的穿透和反射之光學特徵,等效折射率則主導膜層內的光傳播行為,而等效導納和等效折射率可以藉由調整膜厚的組成比例來降低整體的反射率和增加其消光係數。本研究基於已提出的導納軌跡法設計導納匹配之超穎薄膜,製程方面以磁控濺鍍法提升鉻的膜質使成品的吸收特性與設計能夠吻合,此外,由於五層對稱型結構所展現之廣波域吸收特性優於三層對稱型結構,因此鍍製此五層結構並在底下加入一層鉻膜當反射層,一方面可使整體的厚度降低,另一方面可拓寬波域從400nm到2000nm,其平均吸收率高達90%以上,經分析後該等效膜堆之超薄組態在可見光波段依賴導納匹配與足夠的光程消光,在近紅外光波段則是等效膜層與底部的反射層產生破壞性干涉使得反射率降低而提升吸收率。
論文英文摘要:In this work, the proposed five-layered structure on a mirror as an absorber comprising silicon dioxide and chromium films is improved to exhibit strong absorption over 400nm to 2000nm. Based on our previous study, the admittance of the five-layered structure is designed via normalized admittance diagram. The equivalent admittance and refractive index of an equivalent thin metamaterial can be calculated separately. The equivalent admittance dominates the reflection and transmission at the boundary between environment index and film stack. The equivalent refractive index dominates the characteristic of propagation in the film stack. In order to approach the designed performance of absorption, the ultrathin chromium film is deposited to have its refractive index approach the designed one. The average absorptance over the whole wavelength range (400 nm - 2000 nm) is above 90%. By tracing electromagnetic wave through the layered system, it is found that high absorption in the visible range comes from admittance matching and enough optical path for light extinction. The high absorption in near infrared range comes from destructive interference effect that is demonstrated by wave tracing.
論文目次:中文摘要 iii
英文摘要 iv
誌謝 vi
目錄 vii
圖目錄 ix
第一章 文獻回顧 1
1.1文獻回顧 1
1.2層狀吸收器 6
1.3研究動機 13
第二章 原理 14
2.1 光學導納 14
2.2 對稱膜堆理論 16
2.3 消光係數與膜厚 22
2.4 光線追跡法 24
第三章 實驗設計與分析 28
3.1 前言 28
3.2製程方式對鉻膜質的影響 28
3.3三層對稱型結構 29
3.4五層對稱型結構 31
3.5光線追跡分析 34
第四章 實驗與量測系統 36
4.1 鍍膜系統 36
4.1.1 物理氣相沉積法 36
4.1.2 真空抽氣系統 36
4.1.3 冷卻系統 37
4.1.4 實驗流程 37
4.2 量測系統 39
4.2.1 橢圓偏光術與量測 39
4.2.2 橢圓偏光儀之光學常數分析 40
4.2.3 光譜儀量測系統 41
第五章 實驗結果 42
5.1三層對稱型結構之光學特性 42
5.2五層對稱型結構之光學特性 45
5.3金屬與介質之光學參數 48
第六章 結論 49
參考文獻 50
論文參考文獻:1. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Optics express 21, A96-A110 (2013).
2. C. Wu, B. Neuner III, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” Journal of Optics 14, 024005 (2012).
3. H. Deng, T. Wang, J Gao, and X. Yang, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” Journal of Optics 16, 035102 (2014).
4. T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nature photonics 2, 299-301 (2008).
5. C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Applied Physics Letters 96, 133302 (2010).
6. Kaplan, Herbert, “Photonics at Work-Black Coatings Are Critical in Optical Design,” Photonics Spectra 31, 48–51 (1997).
7. N. I. Landy, C. M. Bingham, T. Tler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” physical review B 79, 125104 (2009).
8. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” physical review B 79, 033101 (2009).
9. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Physical review letters 107, 045901 (2011).
10. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano letters 10(7), 2342-2348 (2010).
11. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Advanced Materials 21, 3504-3509 (2009).
12. C. G. Bernhard, William H. Miller, “ A Corneal Nipple Pattern in Insect Compound Eyes,” Acta Physiologica Scandinavica 56(3-4), 385-386 (1962).
13. Y. Huang, S. Chattopadhyay, Y. Jen, C. Peng, T. Liu, Y. Hsu, C. Pan, H. Lo, C. Hsu, Y. Chang, C. Lee, K. Chen and L. Chen, “Improved broadband and quasiomnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770-774 (2007).
14. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Towards perfect antireflection coatings: numerical investigations,” Applied optics 41, 3075-3083 (2002).
15. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, Don N. Futaba, M. Yumura, and K. Hata,“A black body absorber from vertically aligned single-walled carbon nanotubes,” Proceedings of the National Academy of Sciences 106, 6044–6047 (2009).
16. T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen ,and S. I. Bozhevolnyi,“Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nature communications 3, 969 (2012).
17. J. Yang, F. Luo, T. S. Kao, Xiong Li, G. W. Ho, J. Teng, X. Luo ,and M. Hong,“Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light: Science & Applications 3, e185 (2014).
18. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nature communications 2, 517 (2011).
19. W. Li , U. Guler , N. Kinsey , G. V. Naik , A. Boltasseva ,J. Guan , V. M. Shalaev, and A. V. Kildishev,“Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Advanced Materials 26, 7959–7965 (2014).
20. F. Ding, L. Mo, J. Zhu and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Applied Physics Letters 106, 061108 (2015).
21. Z. G. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large area, ultrathin lossy metallic film coatings,” Scientific reports 5, 15137 (2015).
22. C. Y. Yang, C. G. Ji, W. D. Shen, K. T. Lee, Y. G. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics, 3(4), 590-596 (2016).
23. 林善文, “研製金屬-介電質對稱膜堆所組成之等效導納匹配膜, ”國立臺北科技大學,碩士論文,民國105年
24. 李正中,光學薄膜與鍍膜技術,藝軒圖書出版社 (2012).
25. H. A. Macleod, Thin-Film optical filters 4th edition, London: CRC Press (2010).
26. N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterals make metals absorbing,” Scientific reports 3, 3203 (2013).
27. H. I. Deng, Z. G. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. D. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Optics letters 40(11), 2592-2595 (2015).
28. Y.-J. Jen, A. Lakhtakia, M.-J. Lin, W.-H. Wang, H.-M. Wu, H.-S. Liao, “Metal/dielectric/metal sandwich film for broadband reflection reduction,” Scientific reports 3 (2013).
論文全文使用權限:同意授權於2022-01-05起公開