現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:LSCF–SCDC複合陰極的材料應用與性質分析之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Analysis of property and application of LSCF–SCDC composite cathode materials [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:104
畢業學期:第二學期
中文姓名:李京展
英文姓名:Jing-Jhan Li
研究生學號:103788046
學位類別:碩士
語文別:中文
口試日期:2016/06/30
指導教授中文名:吳玉娟
指導教授英文名:Yu-Chuan Wu
口試委員中文名:余炳盛;邱德威;洪逸明
中文關鍵詞:固態反應法對稱電池三電極電池極化阻抗複合陰極
英文關鍵詞:Solid state reactionsymmetrical cellthree-electrodes cellpolarization resistancecomposite cathode
論文中文摘要:本研究主要是以固態反應法製備陽極(60 wt% Ni – 40 wt% Sm0.2Ce0.8O1.9)、主要電解質(Ce0.8Sm0.15Ca0.05O1.875)、陰極(La0.6Sr0.4Co0.2Fe0.8O3–δ)與三種複合陰極(90 wt% La0.6Sr0.4Co0.2Fe0.8O3–δ – 10 wt% Ce0.8Sm0.15Ca0.05O1.875、80 wt% La0.6Sr0.4Co0.2Fe0.8O3–δ – 20 wt% Ce0.8Sm0.15Ca0.05O1.87、70 wt% La0.6Sr0.4Co0.2Fe0.8O3–δ – 30 wt% Ce0.8Sm0.15Ca0.05O1.875)、最後是中間層(Ce0.8Sm0.15Ca0.05O1.875、La0.4Ce0.6O1.8、La0.85Sr0.15Ga0.8Mg0.2O2.825),組成電解質支撐型全電池試片、對稱電池試片與三電極電池試片,將對稱電池試片進行AC交流阻抗分析儀量測,分析陰極極的極化阻抗並透過公式計算交換電流密度與活化能,將三電極電池試片進行CV與AC交流阻抗分析儀等量測,並透過公式計算過電位,而全電池試片進行XRD、SEM、電化學儀和AC阻抗分析儀等量測,分析陰極的表面形貌、橫截面、不同中間層之影響及全電池之功率密度。
論文英文摘要:In this study, the anode (60 wt% Ni – 40 wt% Sm0.2Ce0.8O1.9), main electrolytes (Ce0.8Sm0.15Ca0.05O1.875), cathode (La0.6Sr0.4Co0. 2Fe0.8O3–δ), three kind of composite cathode (90 wt% La0.6Sr0.4Co0.2Fe0.8O3–δ – 10 wt% Ce0.8Sm0.15Ca0.05O1.875, 80 wt% La0.6Sr0.4Co0.2Fe0.8O3–δ – 20 wt% Ce0.8Sm0.15Ca0.05O1.875, 70 wt% La0.6Sr0.4Co0.2Fe0.8O3–δ – 30 wt% Ce0.8Sm0.15Ca0.05O1.875) and the Buffer layer (Ce0.8Sm0.15Ca0.05O1.875, La0.4Ce0.6O1.8, La0.85Sr0.15Ga0.8Mg0.2O2.825) were prepared by solid state reaction method. The electrolyte-supported solid oxide fuel cell, symmetrical cell and three-electrode cell with the anode, main electrolytes, cathode and the Buffer layer were prepared in the study. The symmetrical cell were measured by AC impedance analyzer to analysis the impedance of the polarization resistance in cathode. In the meantime we can also calculate the exchange current density and activation energy by using the formula. The three-electrode cell were measured by CV and AC impedance analyzer, and we utilized the formula to calculate the overpotential. The surface morphology and cross-section of the cathode were analyzed by SEM, and utilized the XRD, electrochemical instrument and AC impedance analyzer to understand the effects of adding different Buffer layers on the full cell and their respective power density.
論文目次:目錄
摘要 I
ABSTRACT II
致謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
第1章 緒論 1
1.1 前言 1
1.2 研究動機 3
第2章 文獻回顧 4
2.1 燃料電池發展背景 4
2.2 燃料電池的種類 4
2.3 固態氧化物燃料電池的工作原理 6
2.4 固態氧化物燃料電池之電解質材料需求 7
2.5 固態氧化物燃料電池之陽極材料需求 8
2.6 固態氧化物燃料電池之陰極材料需求 9
2.7 固態氧化物燃料電池之陰極材料 10
2.8 固態氧化物燃料電池之極化影響 17
2.9 對稱電池之量測 18
2.10 三電極電池之量測 20
第3章 實驗方法與步驟 25
3.1 粉末合成 27
3.2 漿料製備 34
3.3 試片製備 35
3.4 相對密度分析 39
3.5 X光繞射分析 40
3.6 掃描式電子顯微鏡 40
3.7 熱機械分析儀 41
3.8 電化學分析 41
3.9 交流阻抗頻譜分析 42
第4章 結果與討論 43
4.1 XRD之分析 43
4.2 相對密度之分析 47
4.3 顯微結構之分析 47
4.4 對稱電池量測之分析 51
4.5 三電極電池量測之分析 62
4.6 熱膨脹係數之分析 69
4.7 全電池量測之分析 73
第5章 結論 80
第6章 參考文獻 81
第7章 附錄 86
7.1 JCPDS卡號 86
7.2 陽極支撐型之研究 94
論文參考文獻:[1] 林駿杰,摻雜異價離子(Sm3+、Mg2+、Ca2+、Sr2+、Ba2+)之CeO2基電解質的微結構和性質之分析,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2012。
[2] 李明澤,固態電解質La1–xSrxGa1–yMgyO3–δ之電性及微觀結構分析,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2011。
[3] 黃鎮江,燃料電池,台北,滄海書局,2008。
[4] R. O. Hayre, S. W. Cha, W. Colella, F. B. Prinz,燃料電池基礎,全華圖書。
[5] 衣寶蓮,燃料電池-原理與應用,台北,五南書局,2007。
[6] 王錫福,邱善得,薛康琳,蔡松雨,新能源關鍵材料,台北,全華圖書股份有限公司,2013。
[7] 張寬裕,燃料電池原理、量測與建模,台北,鼎茂圖書出版股份有限公司,2010。
[8] 韓敏芳,彭蘇萍,固體氧化物燃料材料及製備,北京,科學出版社,2009。
[9] 韋文誠,燃料電池技術,台北,高立圖書有限公司,2013。
[10] D. Ding, M. Gong, C. Xu, N. Baxter, Y. Li , J. Zondlo, K. Gerdes, X. Liu, “Electrochemical characteristics of samaria–doped ceria infiltrated strontium-doped LaMnO3 cathodes with varied thickness for yttria-stabilized zirconia electrolytes,” Journal of Power Sources 196 (2011), 2551–2557.
[11] Z. Li, B. Wei, Z. Lu, Y. Zhang, K. Chen, J. Miao, W. Su, “Evaluation of (Ba0.5Sr0.5)0.85Gd0.15Co0.8Fe0.2O3–δ cathode for intermediate temperature solid oxide fuel cell,” Ceramics International 38 (2012), 3039–3046.
[12] G. J. Offer, P. Shearing, J. I. Golbert, D. J. L. Brett, A. Atkinson, N. P. Brandon, “Using electrochemical impedance spectroscopy to compensate for errors when measuring polarisation curves during three–electrode measurementsof solid oxide fuel cell electrodes,” Electrochimica Acta 53 (2008), 7614–7621.
[13] J. Winkler, P. V. Hendriksen, N. Bonanos, M. Mogensen, “Geometric requirements of solid electrolyte cells with a reference electrode,” Journal of the Electrochemical Society 145 (1998), 1184–1192.
[14] M. J. L. Ostergard, C. Clausen, C. Bagger, M. Mogensen, “Manganite–Zirconia composite cathodes for SOFC: influence of structure and composition,” Electrochimica Acta 40 (1995), 1971.
[15] A. Esquirol, P. D. Thesis, University of London, 2003.
[16] A. Hashibon, S. Raz, I. Riess, “Preferred position for the reference electrode in solid state electrochemistry,” Solid State Ionics 149 (2002), 167.
[17] Y. P. Fu, “Electrochemical performance of La0.9Sr0.1Co0.8Ni0.2O3−δ–Ce0.8Sm0.2O1.9 composite cathode for solid oxide fuel cells,” International Journal of Hydrogen Energy 36 (2011), 5574–5580.
[18] Z. Yang, C. Yang, B. Xiong, M. Han, F. Chen, “BaCo0.7Fe0.2Nb0.1O3–δ as cathode material for intermediate temperature solid oxide fuel cells,” Journal of Power Sources 196 (2011), 9164–9168.
[19] C. H. Li, S. H. Hu, K. W. Tay, Y. P. Fu, “Electrochemical characterization of gradient Sm0.5Sr0.5CoO3−δ cathodes on Ce0.8Sm0.2O1.9 electrolytes for solid oxide fuel cells,” Ceramics International 38 (2012), 1557–1562.
[20] Z. Gao, Z. Mao, J. Huang, R. Gao, C. Wang, Z. Liu, “Composite cathode La0.15Bi0.85O1.5-Ag for intermediate–temperature solid oxide fuel cells,” Materials Chemistry and Physics 108 (2008), 290–295.
[21] 王曉紅,黃宏,燃料電池基礎,台北,全華圖書股份有限公司,2008。
[22] A. P. Jamale, C. H. Bhosale, L. D. Jadhav, “Electrochemical behavior of LSCF/GDC interface in symmetric cell An application in solid oxide fuel cells,” Journal of Alloys and Compounds 623 (2015), 136–139.
[23] J. Li, S. Wang, Z. Wang, R. Liu, T. Wen, Z. Wen, “La0.84Sr0.16MnO3–δ cathodes impregnated with Bi1.4Er0.6O3 for intermediate–temperature solid oxide fuel cells,” Journal of Power Sources 194 (2009), 625–630.
[24] F. Mauvy, C. Lalanne, J. M. Bassat, J. C. Grenier, H. Zhao, P. Dordor, P. Stevens, “Oxygen reduction on porous Ln2NiO4+δ electrodes,” Journal of the European Ceramic Society 25 (2005), 2669–2672.
[25] Z. Jiang, L. Zhang, L. Cai, C. Xia, “Bismuth oxide-coated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells with yttria-stabilized zirconia electrolytes,” Electrochimica Acta 54 (2009), 3059–3065.
[26] Z. Jiang, Z. Lei, B. Ding, C. Xia, F. Zhao, F. Chen, “Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La,Sr)MnO3 nanoparticles into yttria–stabilized bismuth oxide backbones,” International Journal of Hydrogen Energy 35(2010), 8322–8330.
[27] 李明翰,摻雜異價離子(Sm3+、Ca2+ )對CeO2 基電解質的顯微結構和性質之分析,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2010。
[28] 毛宗強,低溫固體氧化物燃料電池,上海,上海科學技術出版社,2013。
[29] J. Mukhopadhyay, R. N. Basu, “Morphologically architectured spray pyrolyzed lanthanum ferrite–based cathodes A phenomenal enhancement in solid oxide fuel cell performance,” Journal of Power Sources 252 (2014), 252–263
[30] S. F. Wang, C. T. Yeh, Y. R. Wang, Y. F. Hsu, “Effects of (LaSr)(CoFeCu)O3-δ cathodes on the characteristics of intermediate temperature solid oxide fuel cells,” Journal of Power Sources 201 (2012), 18–25.
[31] A. Subardi, M. H. Cheng, Y. P. Fu, “Chemical bulk diffusion and electrochemical properties of SmBa0.6Sr0.4Co2O5+δ cathode for intermediate solid oxide fuel cells,” International Journal of Hydrogen Energy 39 (2014), 20783–20790
[32] J. Liu, A. C. Co, S. Paulson, V. I. Birss, “Oxygen reduction at sol–gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathodes,” Solid State Ionics 177 (2006), 377–387.
[33] Y. Qina, X. Lu, J. Brouwer, D. R. Mumm, “Electrocatalytic Properties of Intermediate Temperature–SOFC Cathode/LSGMC Interfaces,” ECS Transactions, 7 (2007), 329–338
[34] C. H. Hua, C. C. Chou, “Preparation of nanoscale composite LSCF/GDCS cathode materials by microwave sintering for intermediate-temperature SOFC applications,” Ceramics Internationa l41 (2015), 708–712.
[35] F. Qiang , K. N. Sun, N. Q. Zhang, X. D. Zhu, S. Le, D. Zhou, “Characterization of electrical properties of GDC doped A–site deficient LSCF based composite cathode using impedance spectroscopy,” Journal of Power Sources 168 (2007), 338–345
[36] P. Datta, P. Majewski, F. Aldinger, “Structural studies of Sr and Mg–doped LaGaO3,” Journal of Alloys and Compounds, 438 (2007), 232–237.
[37] Y. Q. Song, H. W. Zhang, Y. L. Liu, Y. X. Li, L. R. Shah, J. Q. Xiao, “Annealing effects on the ferromagnetism of Ce0.97Co0.03O2 compounds,” Physica B, 405 (2010), 2530–2533.
[38] Y. Zheng, S. He, L. Ge, M. Zhou, H. Chen, L. Guo, “Effect of Sr on Sm–doped ceria electrolyte,” International Journal of Hydrogen Energy, 39 (2011), 5128–5135.
[39] 廖翊堯,Ce0.8Sm0.15R0.05O2–δ (R = Ca、Sr)電解質支撐型固態氧化物燃料電池製程之改良及微結構分析,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2015。
[40] X. C. Lu, J. H. Zhu, “Effect of Sr and Mg Doping on the Property and Performance La1–xSrxGa1–yMgyO3–δ Electrolyte,” Journal of The Electrochemical Society, 155 (2008), 494–503.
[41] M. Chen, B. H. Kim, Q. Xu, O. J. Nam, J. H. Ko, “Synthesis and performances of Ni-SDC cermets for IT–SOFC anode,” Journal of the European Ceramic Society, 28 (2008), 2947–2953.
論文全文使用權限:同意授權於2021-08-24起公開