現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以化學方法修飾接枝胜肽HHC10於Ti6Al4V鈦合金表面之幾丁聚醣以提高鈦合金表面抗菌及骨嵌合之效果 [以論文名稱查詢館藏系統]
論文英文名稱:Modify chitosan-coated Ti6Al4V with antimicrobial peptide to reduce infection and promote ostcointegration on Ti6Al4V surface [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程與生物科技系化學工程碩士班(碩士在職專班)
畢業學年度:104
畢業學期:第二學期
中文姓名:邱韋翔
英文姓名:Wei-Shang Chiou
研究生學號:102738060
學位類別:碩士
語文別:中文
口試日期:2016/07/27
指導教授中文名:林忻怡
指導教授英文名:Hsin-Yi Lin Ph.D.
口試委員中文名:謝學真;王孟菊
中文關鍵詞:幾丁聚醣、骨母細胞、胜肽、抗菌、鈦金屬Ti6Al4V
英文關鍵詞:chitosan, osteooblast, Antibacterial,titanium
論文中文摘要:鈦金屬具有良好的生物相容性,目前廣泛製造於臨床醫學牙根、關節、骨釘、牙齒矯正器、血管支架及其他應用中。但因為經常手術失敗原因往往是細菌造成感染,所以我們將鈦金屬表面接枝可抗菌的表面以及能夠讓細胞生長表面。可知道抗菌胜肽HHC10有廣泛的抗菌效果,利用胜肽HHC10會與細菌的膜相互作用機制,以破壞細菌的膜造成細菌無法存活。
本研究發現,將幾丁聚醣溶液以化學方法接枝到Ti6Al4V鈦金屬表面上,再以化學交聯方法將幾丁聚醣之表面成功接枝上抗菌胜肽HHC10,抗菌實驗結果顯示,含有抗菌胜肽HHC10可抑制細菌菌落形成。我們將7F2骨母細胞培養於改質過後含有抗菌胜肽HHC10幾丁聚醣表面上,進行I型膠原蛋白質定量、鹼性磷酸酶活性及鈣礦化以了解骨母細胞分化的程度,並由DNA定量了解細胞增生的趨勢。結果顯示,可由DNA定量實驗組含胜肽表面有較佳的細胞生長趨勢,而實驗組含胜肽有較多鈣的沉積,而I型膠原蛋白質測試和鹼性磷酸酶活性並沒有觀察到明顯差異。
論文英文摘要:Titanium alloy has good biocompatibility, it is widely used in fracture fixation, dental implant, artificial joints, artificial bones, teeth straightening, vascular stents and other clinical applications.Implant-associated infections are one of the most serious complications in orthopaedic surgery,so we will be modify chitosan-coated Ti6Al4V with antimicrobial peptide HHC10 peptide can antibacterial and cell culture of surface,an antimicrobial peptide one of the most potent broad-spectrum AMPs, antimicrobial peptides starting with an interaction between the positively charged peptide and the negatively charged phospholipid part of the bacterial membrane.Subsequently, disruption of the membrane can ultimately occur.
In this study, we successfully chemical cross-linking method to modify chitosan-coated Ti6Al4V with antimicrobial peptide HHC10,in the antibacterial activity results shows that can inhibit the the formation of bacterial colonies. Osteoblast cells culture on modified chitosan-coated Ti6Al4V with antimicrobial peptide HHC10. DNA quantification can show the trend of cell growth.Through the test of type I collagen, alkaline phosphatase activity and calcium content can tell the degree of the osteoblast differentiation. From the experiment, it shows DNA quantification have increase when time of increase, and calcium quantitative have a good expression, the two groups have no significantly different on type I collagen secretion and ALP activity.
論文目次:摘要 I
ABSTRACT II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章緒論 1
1.1 前言 1
1.2研究目的 1
第二章 文獻回顧 2
2.1組織工程 2
2.2 骨骼 4
2.3骨母細胞 5
2.4骨骼修復 6
2.5鈦合金 8
2.6鈦合金表面處理 10
2.7幾丁聚醣 12
2.6.1 幾丁聚醣介紹 12
2.6.2 幾丁聚醣性質 14
2.8幾丁聚醣交聯材料 15
2.9 抗菌胜肽 16
第三章實驗材料與方法 18
3.1實驗材料 18
3.1.1細胞及細菌來源 18
3.1.2細胞培養用藥品 18
3.1.3實驗藥品 20
3.1.4儀器設備 22
3.1.5藥品及溶液配製 23
3.2實驗方法 30
3.2.1實驗設計 30
3.2.2物理測試 36
3.2.3生物相容性測試 39
3.2.4統計分析 48
第四章實驗結果與討論 49
4.1樣本物理性質分析 49
4.1.1幾丁聚醣酶降解 49
4.1.2接觸角測試 50
4.1.3能量散射X光譜儀(EDX)測試 51
4.1.4化學分析影像能譜儀(ESCA) 52
3.3 生物相容性測試 54
4.2.1對骨母細胞生長最適化樣本 54
4.2.2細胞型態 55
4.2.3細胞核螢光染色Hoechst33258 57
4.2.4 DNA定量 59
4.2.5 鹼性磷酸酶活性(ALP) 60
4.2.6鈣定量 61
4.2.7 第一型膠原蛋白 62
4.2.8抗菌測試 63
第五章結論 65
附錄一 DNA定量標準曲線 66
附錄二 P-NITROPHENOL標準曲線 67
附錄三 鈣定量標準曲線 68
附錄四 一型膠原蛋白標準曲線 69
參考文獻 70
論文參考文獻:1. Kazemzadeh-Narbat, M., et al., Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials, 2010. 31(36): p. 9519-26.
2. Kazemzadeh-Narbat, M., et al., Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials, 2013. 34(24): p. 5969-77.
3. Cleophas, R.T.C., et al., Convenient Preparation of Bactericidal Hydrogels by Covalent Attachment of Stabilized Antimicrobial Peptides Using Thiol–ene Click Chemistry. ACS Macro Letters, 2014. 3(5): p. 477-480.
4. Colosi, C., et al., Rapid prototyping of chitosan-coated alginate scaffolds through the use of a 3D fiber deposition technique. J. Mater. Chem. B, 2014. 2(39): p. 6779-6791.
5. Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337-4351.
6. L. S. Turek, Orthopaedics: Principles and Their Applications, U.K.: J.B. Lippincott Company, 1984, pp. 31-100.
7. 許世昌,新編解剖學,永大書局有限公司出版發行;pp.111-120,1996
8. E. S. Huether and L.K. Mccance, Understanding Pathophysiology, US: Elsevier Science Health Science Division, 2012
9. I. V. Sikavitsas, S.J. Temenoff, and G.A. Mikos, "Biomaterials and bone mechanotransduction," Biomaterials, Vol. 22, 2001, pp. 2581-2593
10. 王世晞、陳德皓、徐志宏,基礎組織學,臺北市: 藝軒圖書出版社,1992
11. J. B. Lian,et al. Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation.Iowa Orthop J. 1995; 15: 118–140
12. DJ Baylink, JE Wergedal.Bone formation and resorption by osteocytes.Cellular Mechanisms for Calcium Transfer and Homeostasis ;pp257,1971
13. Eriksen E,Kassem M.The cellular basis of bone remodeling.Triangle;pp45-57,1992
14. 邱家昌,「骨折癒合」,生物醫學第一卷,第三期,2008,第264-273頁。
15. http://vschool.scu.edu.tw/biology/content/cytology/Bone%20remodeling.htm,存取日期:2014年6月20日。
16. 純鈦及鈦合金特性及製程介紹,洪 胤 庭 博士,中鋼公司新材料研究發展處
17. Feng, B., et al., Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials, 2003. 24(25): p. 4663-4670.
18. Zhu, X., et al., Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials, 2004. 25(18): p. 4087-103.
19. T.C.A. Phan, J. Xu and M.H. Zheng, Interaction between osteoblast and osteoclast impact in bone disease, Histol Histopathol ,2004, 19:p1325-1344
20. Okazaki et al., Cytocompatibility of various metal and development of new titanium alloys for medical implants, Materials Science and Engineering: A,1998, 243: p250-256
21. Bumgardner, J.D., et al., Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. Journal of Biomaterials Science, Polymer Edition, 2003. 14(5): p. 423-438.
22. Leane, M.M., et al., Use of the ninhydrin assay to measure the release of chitosan from oral solid dosage forms. International Journal of Pharmaceutics, 2004. 271(1-2): p. 241-249.
23. VandeVord, P.J., et al., Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res, 2002. 59(3): p. 585-90.
24. H. Onishi and Y. Machida, "Biodegradation and distribution of water-soluble chitosan in mice," Biomaterials, Vol. 20, 1999, pp. 175-182
25. N.V.M.R. Kumar , "A review of chitin and chitosan applications," Reactive & functional polymers, Vol. 46, 2000.
26. 蔣挺大, 甲殼素.化學工業出版社(2003)
27. Sundararajan V. Madihally, H.W.T.M., Porous chitosan sca!olds for tissue engineering. 1999.
28. Ren, D., et al., The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr Res, 2005. 340(15): p. 2403-10.
29. Cai, K., et al., Surface modification of poly (D,L-lactic acid) with chitosan and its effects on the culture of osteoblasts in vitro. J Biomed Mater Res, 2002. 60(3): p. 398-404.
30. Yong Zhang, Miqin Zhang, Microstructural and mechanical characterization of chitosan scaffolds reinforced by calcium phosphates.non-crystalline solid,2001.282(2-3):p.159–164
31. Hsieh, W.C., C.P. Chang, and S.M. Lin, Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloids Surf B Biointerfaces, 2007. 57(2): p. 250-5.
32. Hancock, R.E.W., Cationic peptides: effectors in innate immunity and novel antimicrobials. The Lancet Infectious Diseases, 2001. 1(3): p. 156-164.
33. Ganz, T. Chemistry. Rings of destruction. Nature 412, 392-3 (2001).
34. Papagianni, M., Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnology Advances, 2003. 21(6): p. 465-499.
35. A Tossi, L Sandri, A Giangaspero,Amphipathic, α‐helical antimicrobial peptides, Peptide Science, 2000.Volume 55, Issue 1 2000 Pages 4–30
36. M. Krumova, et al., Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer, 2000. 41: p. 9265-9272.
37. Rao, S.B. and C.P. Sharma, 97Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. Journal of Biomedical Materials Research, 1997. 34: p. 21-28.
38. B.G. Keselowsky, D.M. Collard, A.J. Garcia Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion J Biomed Mater Res A, 66 (2003), pp. 247–25939. C.R. Jenney, J.M. Anderson Adsorbed serum proteins responsible for surface dependent human macrophage behavior J Biomed Mater Res, 49 (2000), pp. 435–447
40. Tsai, W.B., et al., RGD-conjugated UV-crosslinked chitosan scaffolds inoculated with mesenchymal stem cells for bone tissue engineering. Carbohydr Polym, 2012. 89(2): p. 379-87.
41. Tsai, W.-B., et al., Fabrication of UV-crosslinked chitosan scaffolds with conjugation of RGD peptides for bone tissue engineering. Carbohydrate Polymers, 2011. 85(1): p. 129-137.
42. Chua, P.H., et al., Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials, 2008. 29(10): p. 1412-21.
43. B.G. Keselowsky, D.M. Collard, A.J. Garcia Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion J Biomed Mater Res A, 66 (2003), pp. 247–259
44. C.R. Jenney, J.M. Anderson Adsorbed serum proteins responsible for surface dependent human macrophage behavior J Biomed Mater Res, 49 (2000), pp. 435–447
45. Pettifor, J.M. and H. Juppner, 19Pediatric Bone: Biology & Diseases. 2011, Carolina: Academic Press.
46. Rosa,A.L.and M.M. Beloti,Development of the osteoblast phenotype of serial cell subcultures from human bone marrow. Brazilian dental journal, 2005.16(3):p.225-30.
47. Pivonka, P., et al., 100Model structure and control of bone remodeling: a theoretical study. Bone, 2008. 43(2): p. 249-63.
48. Wen-Yang Lin,Covalent Binding of Film and Nanofibers on 316L Stainless Stell and Their Performance in Dynamic Culture of Osteoblast
49. Zouani, O.F., et al., Differentiation of pre-osteoblast cells on poly(ethylene terephthalate) grafted with RGD and/or BMPs mimetic peptides. Biomaterials, 2010. 31(32): p. 8245-53.
50. Bilezikian, J.P., L.G. Raisz, and T.J. Martin, 17Principles of Bone Biology. 2008, Carolina: Academic Press.
論文全文使用權限:不同意授權