現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以3D列印製作海藻酸鈉水凝膠和幾丁聚醣/聚乙烯醇奈米纖維雙層複合支架用於組織修復 [以論文名稱查詢館藏系統]
論文英文名稱:Making Bi-layered composite scaffold with 3D plotted Alginate hydrogel and Chitosan / polyvinyl alcohol nanofibers for tissue repair [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:104
畢業學期:第二學期
出版年度:105
中文姓名:林慧宣
英文姓名:HUEI-SYUAN,LIN
研究生學號:103738050
學位類別:碩士
語文別:中文
指導教授中文名:林忻怡
指導教授英文名:Hsin-Yi Lin
口試委員中文名:王孟菊;謝學真
中文關鍵詞:海藻酸鈉幾丁聚醣電紡絲3D列印生物黏著劑
英文關鍵詞:alginatechitosanElectro spun3D printTissueAid adhesive
論文中文摘要:3D列印技術可以製作出具有互相通聯的多孔性支架,有利細胞生長、營養物質輸送與代謝物排除。並用電紡絲方法來製造具有大量表面積及孔隙的結構,以模仿細胞外間質。結合3D列印技術及電紡技術產物,製造皮膚敷料複合材料的研究。電紡材料選擇幾丁聚醣及聚乙烯醇,皆是生物可分解材料,並利用濃醋酸(90vol%)為溶劑,可以有效降低表面張力、增加電荷密度,形成奈米纖維。再藉由戊二醛蒸氣交聯奈米纖維提升其機械性質,將做為皮膚的表皮層。3D列印的材料選擇氯化鈣交聯海藻酸鈉,形成膠體,做為皮膚的真皮層,最後將這2種樣本以生物膠黏合形成最終的複合材料。複合材料與3D成型海藻酸鈉水凝膠支架相比,複合支架有較高的拉伸強度,較低的降解率、膨潤率與透濕性。
複合材料透濕值略高於正常皮膚但低於無蓋容器的透濕值。在生物相容性上也有良好的生長。
論文英文摘要:3D printing technology produces scaffolds with interconnected pores. They facilitate cell growth, nutrient and metabolic waste transportation. Electro spun method produces nanofibers with large surface area and pore structure, mimicking the extracellular matrix. Combing 3D printing technology and electro spun technology to manufacture skin dressing composites. Electro spun material selection chitosan and polyvinyl alcohol are all biodegradable material, and use concentrated acetic acid (90 vol %) as a solvent. It can effectively reduce the surface tension,increase the charge density, form nanofibers. Improving mechanical properties by glutaraldehyde vapor cross-linked nanofibers as the skin surface. 3D printing material choice alginate hydrogel with calcium chloride crosslinked to form gelled as the dermal layer. And finally bonding two kinds of product biological with glue to form composite.
Compared composites material with 3D molded alginate hydrogel scaffold, composites material scaffolds have a higher tensile strength, low degradation rate, swelling rate and water vapor permeability.
Composites material value slightly above but below lidless container moisture permeability values. It also has good growth on the biocompatibility.
論文目次:摘要……………………………………………………………………………………….I
ABSTRACT…………………………………………………………………………….II
致謝…………………………………………………………………………………….IV
目錄…………………………………………………………………………………….V
表目錄……………………………………………………………………………….VIII
圖目錄………………………………………………………………………………….IX
第一章緒論…………………………………………………………………………….1
1.1 前言……………………………………………………………………………..11
1.2研究目的…………………………………………………………………………… 2
第二章文獻回顧……………………………………………………………………….3
2.1組織工程…………………………………………………………………………… 3
2.2 傷口癒合………………………………………………………………………… 4
2.3 褐藻酸鈉………………………………………………………………………… 7
2.4 幾丁聚醣………………………………………………………………………… 9
2.5 3D列印……………………………………………………………………………… 12
2.6靜電紡絲…………………………………………………………………………… 13
2.7荷美敷 TISSUE AID…………………………………………………… 14
第三章 實驗材料與方法……………………………………………………15
3.1實驗材料…………………………………………………………………………… 15
3.1.1細胞來源……………………………………………………………………… 15
3.1.2細胞培養用藥品………………………………………………………… 15
3.1.3實驗藥品……………………………………………………………………… 18
3.1.4儀器設備……………………………………………………………………… 20
3.1.5藥品及溶液配製………………………………………………………… 22
3.2實驗方法…………………………………………………………………………. 26
3.2.1實驗設計……………………………………………………………………… 26
3.2.2實驗流程……………………………………………………………………… 26
3.2.3 電紡溶液配置…………………………………………………………… 27
3.2.4電紡架構及參數設定………………………………………………… 27
3.2.5交聯 (crosslinking)………………………………………… 31
3.2.6海藻酸鈉經氯化鈣交聯的製備…………………………… 32
3.2.7 3D列印支架結合電紡樣本…………………………………… 33
3.3物理性質測試………………………………………………………………… 36
3.3.1掃描式電子顯微鏡(SEM)……………………………………… 36
3.3.2拉伸測試(Tensile Properties)………………… 36
3.3.3 膨潤率測試……………………………………………………………… 37
3.3.4透濕性測試…………………………………………………………………… 37
3.3.5降解率測試…………………………………………………………………… 38
3.4生物相容性測試……………………………………………………………… 39
3.4.1支架優質化………………………………………………………………..39
3.4.2細胞增生………………………………………………………………....41
3.4.3DNA定量………………………………………………………………………. 42
第四章 實驗結果與討論………………………………………………………43
4.1物理性質測試…………………………………………………………………… 43
4.1.1 電子顯微鏡……………………………………………………………… 43
4.1.2透濕性測試…………………………………………………………………… 45
4.1.2膨潤率測試…………………………………………………………………… 46
4.1.3.降解………………………………………………………………………….. 47
4.1.4.1楊氏係數………………………………………………………………… 48
4.1.4.1最大拉伸強度(UTS)…………………………………………… 49
4.2生物相容性…………………………………………………………………….. 50
4.2.1支架優質化…………………………………………………………………… 51
4.2.2細胞增生............................52
第五章 結論………………………………………..……………………………….53
參考文獻……………………………………………………………………………….. 55
附錄一 DNA濃度曲線..……………………………………………………58
論文參考文獻:1.Martin, P., Wound healing - Aiming for perfect skin regeneration. science 1997. 276(5309): p. 75-81.
2.Bhattarai, N., J. Gunn, and M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev, 2010. 62(1): p. 83-99.
3.Bidarra, S.J., Barrias, C. C.Fonseca, K. B.Barbosa, M. A.Soares, R. A.
Granja, P. L.., Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials, 2011. 32(31): p. 7897-904.
4.Rowley, J.M., G; Mooney, DJ, Alginate hydrogels as synthetic extracellular matrix materials.pdf>. 1999.
5.Drury, J.L., D. J, and Mooney, Hydrogels for tissue engineering: scaffold design variablesand applications. Biomaterials 2003. 24(24): p. 4337-4351.
6.Colosi, Cristina.Costantini, Marco.Latini, Roberta.Ciccarelli, Serena.Stampella, Alessandra.Barbetta, Andrea.Massimi, Mara.Conti Devirgiliis, Laura.Dentini, Mariella., Rapid prototyping of chitosan-coated alginate scaffolds through the use of a 3D fiber deposition technique. J. Mater. Chem. B, 2014. 2(39): p. 6779-6791.
7.MacNeil, S., Progress and opportunities for tissue-engineered skin. Nature, 2007. 445(7130): p. 874-80.
8.Gurtner, G.C.Werner, S.Barrandon, Y.Longaker, M. T.., Wound repair and regeneration. Nature, 2008. 453(7193): p. 314-21.
9.Coussens, L.W., Inflammation and cancer. Znature, 2002. 420(6917): p. 860-867.
10.Babensee, J.A., JM; McIntire, LV.,et al, Host response to tissue engineered devices advanced drug delivery reviews, 1998. 33(1-2): p. 111-139.
11.R Ross, G.O., Human wound repair II. Inflammatory cells, epithelial-
mesenchymal interrelations, and fibrogenesis The Journal of cell biology, 1968. 39: p. 152-168.
12.Gill, S. and W. Parks, Metalloproteinases and their inhibitors: Regulators of wound healing. The International Journal of Biochemistry & Cell Biology, 2008. 40(6-7): p. 1334-1347.
13.Werner, S.G., Regulation of wound healing by growth factors and cytokines. rphysiological reviews, 2003. 83(3): p. 835-870.
14.Miller, S.B., Prostaglandins in health and disease: an overview. Semin Arthritis Rheum, 2006. 36(1): p. 37-49.
15.Ogawa, Y. and W.J. Calhoun, The role of leukotrienes in airway inflammation. J Allergy Clin Immunol, 2006. 118(4): p. 789-98; quiz 799-800.
16.Muller, A.K., M. Meyer, and S. Werner, The roles of receptor tyrosine kinases and their ligands in the wound repair process. Semin Cell Dev Biol, 2012. 23(9): p. 963-70.
17.Guo, S. and L.A. Dipietro, Factors affecting wound healing. J Dent Res, 2010. 89(3): p. 219-29.
18.Lamouille, S.M., C; Feige, JJ, Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 2002. 100(13): p. 4495-4501.
19.Yang, J.-S., Y.-J. Xie, and W. He, Research progress on chemical modification of alginate: A review. Carbohydrate Polymers, 2011. 84(1): p. 33-39.
20.Fujiki, K.Y., Effects of sodium alginate on the non-specific defence system of the common carp (Cyprinus carpio L) Tfish& Shellfish Immunology, 1997. 7(6): p. 417-127.
21.Sriamornsak, P., N. Thirawong, and K. Korkerd, Swelling, erosion and release behavior of alginate-based matrix tablets. Eur J Pharm Biopharm, 2007. 66(3): p. 435-50.
22.George, M. and T.E. Abraham, Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review. J Control Release, 2006. 114(1): p. 1-14.
23.Lee, K.Y. and D.J. Mooney, Alginate: properties and biomedical applications. Prog Polym Si, 2012. 37(1): p. 106-126.
24.Bajpai, S.K. and S. Sharma, Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. Reactive and Functional Polymers, 2004. 59(2): p. 129-140.
25.Gombotz, W.R. and S.F. Wee, Protein release from alginate matrices. Advanced Drug Delivery Reviews, 2012. 64: p. 194-205.
26.LeRoux, M.G., F; Setton, Compressive and shear properties of alginate gel: Effects of sodiusm ions and alginate concentration. Lajournal of Biomedical Materials Research, 1999. 47(1): p. 46-53.
27.Kikuchi, A.K., M; Sugihara, M; et al, Pulsed dextran release from calcium-alginate gel beads. Journal of Controlled Release, 1997. 47(1): p. 21-29.
28.Chen, R.T., ML; Lin, Effects of chain flexibility of chitosan molecules on the preparation, physical, and release characteristics of the prepared capsule. Wccarbohydrate Polymers, 1996. 31(3): p. 141-148.
29.Brown, M.A., M.R. Daya, and J.A. Worley, Experience with chitosan dressings in a civilian EMS system. J Emerg Med, 2009. 37(1): p. 1-7.
30.陳榮輝, 幾丁質、幾丁聚醣的生產製造檢測與應用. 科 學 發 展 月 刊 2001. 29(10): p. 776-787.
31.Kumar, A review of chitin and chitosan applications. Mnvrreactive & Functional Polymers, 2000. 46(1): p. 1-27.
32.Khor, E. and L.Y. Lim, Implantable applications of chitin and chitosan. Biomaterials, 2003. 24(13): p. 2339-2349.
33.VandeVord, P.J.Matthew, H. W.DeSilva, S. P.Mayton, L.Wu, B.
Wooley, P. H.Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of Biomedical Materials Research, 2002. 59(3): p. 585-590.
34.Ren, D.Yi, H.Wang, W.Ma, X., The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr Res, 2005. 340(15): p. 2403-10.
35.Chen, S.C.Wu, Y. C.Mi, F. L.Lin, Y. H.Yu, L. C.Sung, H. W.
, A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release, 2004. 96(2): p. 285-300.
36.Sanna M. Peltola, F.P.W.M., Dirk W. Grijpma, and Minna Kellomäki A review of rapid prototyping techniques for tissue engineering purposes. 2008.
37.Wilson, C.E.van Blitterswijk, C. A.Verbout, A. J.Dhert, W. J.de Bruijn, J. D.
, Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique. J Mater Sci Mater Med, 2011. 22(1): p. 97-105.
38.Kumar, S. and J.P. Kruth, Composites by rapid prototyping technology. Materials & Design, 2010. 31(2): p. 850-856.
39.Li, D.X., Y, Electrospinning of Nanofibers Reinventing the Wheel.pdf>. 2004.
40.Molnar, K., L.M. Vas, and T. Czigany, Determination of tensile strength of electrospun single nanofibers through modeling tensile behavior of the nanofibrous mat. Composites Part B: Engineering, 2012. 43(1): p. 15-21.
41.勁捷有限公司, <荷美敷高黏度組織黏著劑.pdf>.
42.05, A.E.E.M.-. Standard Test Methods forWater Vapor Transmission of Materials.
43.Sandby-Moller, J., T. Poulsen, and H.C. Wulf, Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol, 2003. 83(6): p. 410-3.
44.Lisa Ruiz-Cardona* ‘, Y.D.S., L.M. Benedett$, and V.J.S.a.E.M. Topp*, Application of benzyl hyaluronate membranes as potential wound dressings evaluation of water vapour and gas permeabilities.pdf>. 1996: p. 1639-1643.
論文全文使用權限:不同意授權