現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:動態拉伸對包覆於高古羅醣醛酸比例海藻酸鈉水凝膠中的纖維母細胞生長與型態之影響 [以論文名稱查詢館藏系統]
論文英文名稱:Effect of cyclic stretching on the growth and morphology of fibroblasts embedded in high α-L-guluronic alginate hydrogel [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程與生物科技系化學工程碩士班(碩士在職專班)
畢業學年度:104
畢業學期:第二學期
中文姓名:李柏俊
英文姓名:Li, Bo-Chun
研究生學號:103738016
學位類別:碩士
語文別:中文
口試日期:2016/07/27
指導教授中文名:林忻怡
指導教授英文名:Lin, Hisn-Yi
口試委員中文名:謝學真;王孟菊
中文關鍵詞:海藻酸鈉、纖維母細胞、快速成形、動態拉伸
英文關鍵詞:Alginate, Fibroblast, Rapid prototyping, Cyclic stretching
論文中文摘要:海藻酸鈉水凝膠被證明具有廣泛適用性的生物材料。利用水凝膠製成多孔性立體結構來填滿組織缺失的部分,其多孔結構可以有效的提供細胞與養分的移動。海藻酸鈉是無毒、可降解、水溶性的天然高分子材料,故將其與細胞均勻混合,填充於組織要修復的地方,加快損失部位的修復。
本研究我們將以細胞包覆於海藻酸鈉水凝膠內做測試,以快速原型系統做成3D多孔性支架;比較實驗組:在每天一分鐘下的動態拉伸培養以及對照組:靜態培養的細胞生長、細胞形態及細胞活性。
實驗結果顯示細胞包覆於海藻酸鈉纖維中從DNA定量來看細胞是會隨時間生長,但是實驗組與對照組並沒有太大的差異,可能是由於動態拉伸只有每天一分鐘的關係,對於細胞並沒有持續受到拉伸應力影響的關係。
論文英文摘要:Alginate hydrogels are proving to have a wide applicability as biomaterials. We use the porosity three-dimensional structure to fills the missing part of the organization by hydrogel, to provide cell shift and nutrition transfer due to the porosity structure. It is important that scaffolds require porosity, biocompatibility and degradability. Alginate is a not only non-toxic but also water-soluble natural polymer material to fabricate scaffold. It can uniform mix with cell and to fill on the loss part of the organization, speed up the repair of the loss parts.
In the study, we used cell embedded in alginate hydrogel to test, and using rapid prototyping systems made of 3-D porous scaffold, The experimental group was cyclically stretched for 1 minute per day, the control group was static culture about cell growth, cell morphology and cell viability are compared.
The cell proliferation results show that the cells embedded in alginate fibers grew overtime. But the experimental group and control group are not difference. Because of effects of cyclic stretching on cell just 1 minute per day.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iii
目錄 iv
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 組織工程 4
2.2 傷口癒合過程 5
2.3 快速原型系統 8
2.4 機械應力對細胞的影響 9
2.5 海藻酸鈉 13
2.5.1 材料介紹 13
2.5.2 海藻酸鈉纖維支架 14
第三章 實驗材料與方法 15
3.1 實驗材料 15
3.1.1 細胞來源 15
3.1.2 細胞培養用藥品 15
3.1.3 實驗藥品 17
3.1.4 儀器設備 20
3.1.5 藥品及溶液製備 24
3.2 實驗方法 30
3.2.1 實驗設計 30
3.2.2 實驗流程 31
3.2.3 海藻酸鈉濃度、拉伸參數、細胞密度及培養液之選擇 32
3.2.4 快速原型機架設 34
3.2.5 物理測試 36
3.2.6 動態拉伸 39
3.2.7 製作高古羅醣醛酸比例的海藻酸鈉-細胞支架 41
3.2.8 纖維母細胞在支架上的測定 43
3.2.9 纖維母細胞基因表現 50
3.2.10 統計分析 53
第四章 結果與討論 54
4.1 物理性質測試 54
4.1.1 高古羅醣醛酸比例海藻酸鈉與低古羅醣醛酸比例海藻酸鈉之楊氏係數以及最大拉伸強度比較 54
4.1.2 海藻酸鈉支架於培養液中的降解測試 56
4.1.3 海藻酸鈉支架於培養液中的膨潤率測定 57
4.2 細胞型態與分布 58
4.2.1 活細胞及時觀察影像系統 58
4.2.2 細胞存活螢光染色 59
4.2.3 Haematoxylin & Eosin染色 61
4.3 細胞增生 64
4.4 第一型膠原蛋白測定及免疫螢光染色 65
4.5 基因表現 68
第五章 結論 71
附錄…… 72
附錄 1 DNA標準曲線 72
附錄 2 Type I collagen 標準曲線 73
附錄 3 PCR efficiency standard curve-GAPDH 74
附錄 4 PCR efficiency standard curve-Fn-1 74
附錄 5 PCR efficiency standard curve-FGF-11 75
參考文獻 76
論文參考文獻:1. Miron-Mendoza M, K.V., Zhou C, Petroll WM., Techniques for assessing 3-D cell–matrix mechanical interactions in vitro and in vivo. Experimental cell research 2013. 319(2013): p. 2470-2480.
2. Nathalie Launay, Bertrand Goudeau, Kanefusa Kato, Patrick Vicart, Alain Lilienbaum., Cell signaling pathways to [alpha]B-crystallin following stresses of the cytoskeleton. Experimental Cell Research, 2006. 312(18): p. 3570-3584.
3. Mcgarry James G., K.-N.J., Prendergast Patrick J., The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts. Biochemical and Biophysical Research Communications, 2005. 330(1): p. 341-348.
4. Suzanne M. Norvell, Suzanne M. Ponik, Deidre K. Bowen, Rita Gerard, and Fredrick M. Pavalko., Fluid shear stress induction of COX-2 protein and prostaglandin release in cultured MC3T3-E1 osteoblasts does not require intact microfilaments or microtubules. J Appl Physiol, 2004. 96(3): p. 957-966.
5. Thi, Mia M., Takashi Kojima, Stephen C. Cowin,Sheldon Weinbaum, and David C. Spray., Fluid shear stress remodels expression and function of junctional proteins in cultured bone cells. J Physiol Cell Physiol, 2003. 284(2): p. 389-403.
6. Ponik SM., P.F., Formation of focal adhesions on fibronectin promotes fluid shear stress induction of COX-2 and PGE2 release inMC3T3-E1 osteoblasts. JAppl Physiol, 2004. 97(1): p. 135-142.
7. Ding-Yu Lee, Chiuan-Ren Yeh, Shun-Fu Chang,1 Pei-Ling Lee, Shu Chien, Cheng-Kung Cheng, and Jeng-Jiann Chiu., Integrin-mediated expression of bone formation-related genes in osteoblastlike cells in response to fluid shear stress: roles of extracellular matrix, Shc, and mitogen-activated protein kinase. J BoneMiner Res 23 (7) : 1140-1149, 2008.
8. Susan M. Mccormick, Vikas Saini, Yigit Yazicioglu, Zoe N. Demou, and Thomas J. Royston1., Interdependence of pulsed ultrasound and shear stress effects on cell morphology and gene expression. Ann Biomed Eng, 2006. 34(3): p. 436-445.
9. Morita Tsuyoshi, M.T., Sobue Kenji., Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs). Experimental Cell Research, 2007. 313(16): p. 3432-3445.
10. Jon A. Rowley, G.M., David J., Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20: 45-53, 1999.
11. Wu, W.-W., Cell Embedded in Fibers of Porous Scaffold through 3D Plotting Fabrication to Repair Skin. National Taipei University of Technology, 2012.
12. Drury, J.L., David J, and Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. . Biomaterials 24(24) : 4337-4351, 2003.
13. Landers, R., Ute Hübner, Rainer Schmelzeisen, and Rolf Mülhaupt, Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. . Biomaterials, 2002. 23(23): p. 4437-4447.
14. MacNeil, S., Progress and opportunities for tissue-engineered skin. . Nature, 2007(874-880).
15. Gurtner, G.C., Sabine Werner, Yann Barrandon, and Michael T. Longaker, Wound repair and regeneration. nature, 2008. 453: p. 314-321.
16. SE1, G.a.P.W., Metalloproteinases and their inhibitors: Regulators of wound healing. . Int J Biochem Cell Biol, 2008. 40(6-7): p. 1334-1347.
17. WERNER, S.a.R.G., Regulation of Wound Healing by Growth Factors and Cytokines. Physiological Reviews. 2003. 83: p. 835-870.
18. Greenhalgh, D.G., The role of apoptosis in wound healing. Biochemistry & Cell Biology, 1998. 30: p. 1019-1030.
19. David M. Simpson and Russira., R., The Neutrophilic Leukocyte in Wound Repair. Clinical Investigation, 1972. 51: p. 2009-2023.
20. Martin, P., Wound Healing--Aiming for Perfect Skin Regeneration. Science, 1997. 276(0036-8075).
21. Rowley, J.A., Gerard Madlambayan, and David J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1999. 20(1): p. 45-53.
22. Müller, A.-K., Michael Meyer, and Sabine Werner, The roles of receptor tyrosine kinases and their ligands in the wound repair process. Semin Cell Dev Biol, 2012. 23(9): p. 963-970.
23. Behrooz A. Torkian, M.A.T.Y., PhD; Rodney Engel, BA; Chung-Ho Sun, PhD; Bruce J. Tromberg, PhD; Brian J. F. Wong, MD, PhD., Modeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy. Arch Facial Plast Surg, 2004. 6(3): p. 180-187.
24. A. Almiralla, G. Larrecqa, J.A. Delgadoa, S. Mart!ınezb, J.A. Planella, M.P. Ginebra., et al., Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste. Biomaterials, 2004. 25(17): p. 3671-80.
25. Sanna M. Peltola, F.P.W.M., Dirk W. Grijpma, and Minna Kellomäki, A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine, 2008. 40(4): p. 268-280.
26. Ma, P.X., Scaffolds for tissue fabrication. Materials Today, 2004. 7(5): p. 30-40.
27. C. E. Wilson A. J. Verbout C. A. van Blitterswijk W. J. A. Dhert J. D. de Bruijn., Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique. J Mater Sci Mater Med, 2011. 22(1): p. 97-105.
28. K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah, P. Cheang, M.S. Abu Bakar, S.W. Cha., Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials, 2003. 24(18): p. 3115-3123.
29. Leong, K.F., C.M. Cheah, and C.K. Chua, Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, 2003. 24(13): p. 2363-2378.
30. Kumar, S. and J.P. Kruth, Composites by rapid prototyping technology. Materials & Design, 2010. 31(2): p. 850-856.
31. Alejandro Nieponice, Timothy M. Maul, Joy M. Cumer, Lorenzo Soletti, David A. Vorp., Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J Biomed Mater Res A, 2007. 81(3): p. 523-30.
32. Siva R.P. Gudi, C.B.C., John A. Frangos, Fluid Flow Rapidly Activates G Proteins in Human Endothelial Cells Involvement of G Proteins in Mechanochemical Signal Transduction. Circulation Research, 1996. 79: p. 834-839.
33. Minoru Ohno, M.G.H.G., MD; Victor J. Dzau, MD; and John P. Cooke, MD, PhD, Shear Stress Elevates Endothelial cGMP Role of a Potassium Channel and G Protein Coupling. Circulation Research, 2016. 1993(88): p. 193-197.
34. Izumo, J.-i.S.a.S., Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. The European Molecular Biology Organization, 1993. 12(4): p. 1681-1692.
35. Siddarth D. Subramony, Amanda Su, Keith Yeager, Helen H. Lu., Combined effects of chemical priming and mechanical stimulation on mesenchymal stem cell differentiation on nanofiber scaffolds. J Biomech, 2014. 47(9): p. 2189-96.
36. Pang, Y., et al., Dynamic quantitative visualization of single cell alignment and migration and matrix remodeling in 3-D collagen hydrogels under mechanical force. Biomaterials, 2011. 32(15): p. 3776-83.
37. Galie, P.A. and J.P. Stegemann, Simultaneous application of interstitial flow and cyclic mechanical strain to a three-dimensional cell-seeded hydrogel. Tissue Eng Part C Methods, 2011. 17(5): p. 527-36.
38. Chenyu Huang, Kunio Miyazaki, Satoshi Akaishi, Atsushi Watanabe, Hiko Hyakusoku, Rei Ogawa., Biological effects of cellular stretch on human dermal fibroblasts. J Plast Reconstr Aesthet Surg, 2013. 66(12): p. 351-361.
39. Shigeo M. Tanakaa, J.L., Randall L. Duncana, Hiroki Yokotab, David B. Burrb, Charles H. Turner, Effects of broad frequency vibration on cultured osteoblasts. Biomechanics, 2002. 36(2003): p. 73-80.
40. Nicholas G. Genes, Jonathan A. Rowley, David J. Mooney, and Lawrence J. Bonassar., Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Arch Biochem Biophys, 2004. 422(2): p. 161-7.
41. Yang, J.-S., Y.-J. Xie, and W. He, Research progress on chemical modification of alginate: A review. Carbohydrate Polymers, 2011. 84(1): p. 33-39.
42. Silvia Bubenikova, Izabela-Cristina Stancu, Lucia Kalinovska, Etienne Schacht, Evi Lippensc, Heidi Declercq, Maria Cornelissen, Matteo Santin, Muriel Amblard, Jean Martinez., Chemoselective cross-linking of alginate with thiol-terminated peptides for tissue engineering applications. Carbohydrate Polymers, 2012. 88(4): p. 1239-1250.
43. Lee, K.Y. and D.J. Mooney, Alginate: properties and biomedical applications. Prog Polym Sci, 2012. 37(1): p. 106-126.
44. Nikhil O. Dhoot, Chris A. Tobias, Itzhak Fischer, Margaret A. Wheatley., Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth. J Biomed Mater Res A, 2004. 71(2): p. 191-200.
45. Gombotz, W.R. and S.F. Wee, Protein release from alginate matrices. Advanced Drug Delivery Reviews, 2012. 64: p. 194-205.
46. Li, Y., et al., Preparation and property of layer-by-layer alginate hydrogel beads based on multi-phase emulsion technique. Journal of Sol-Gel Science and Technology, 2012. 62(2): p. 217-226.
47. Drury, J.L., R.G. Dennis, and D.J. Mooney, The tensile properties of alginate hydrogels. Biomaterials, 2004. 25(16): p. 3187-99.
48. M. Pokrywczynska, T. Drewa, A. Jundzill, and J. Lysik., Alginate is not a good material for growth of rapidly proliferating cells. Transplant Proc, 2008. 40(5): p. 1664-7.
49. Yi Cheng, Lingbin Lu, Wuyuan Zhang, Jianjun Shi, Yang Cao., Reinforced low density alginate-based aerogels: Preparation, hydrophobic modification and characterization. Carbohydrate Polymers, 2012. 88(3): p. 1093-1099.
50. Bajpai, S.K. and S. Sharma, Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. Reactive and Functional Polymers, 2004. 59(2): p. 129-140.
51. Peltola, S.M.a.G., Dirk W. and Melchels, Ferry P.W. and Kellomäki, Minna, A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine, 2008. 40(4): p. 268-280.
52. Wu, Min-Che., Effects of cyclic stretching on the growth and morphology of fibroblasts embedded in alginate hydrogel fibers. National Taipei University of Technology, 2014.
53. Oju Jeon, Daniel S. Alt, Shaoly M. Ahmed, Eben Alsberg., The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. Biomaterials, 2012. 33(13): p. 3503-14.
54. C. Neidlinger-Wilke, E.S.G., J.H.-C. Wang, R.A. Brand, L. Claes, Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. Orthopaedic Research, 2000. 19(2001): p. 286-293.
55. Park, S.A., S.H. Lee, and W. Kim, Fabrication of hydrogel scaffolds using rapid prototyping for soft tissue engineering. Macromolecular Research, 2011. 19(7): p. 694-698.
56. Godwin Avwioro., Histochemical uses of haematoxylin - A review. J Pharm Clin Sci, 2011. 1: p. 24-34.
57. Yulia Sapir, Smadar Cohen, Gary Friedman, Boris Polyak., The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials, 2012. 33(16): p. 4100-9.
58. Sílvia J. Bidarra, Cristina C. Barrias, Keila B. Fonseca, Mário A. Barbosa, Raquel A. Soares, Pedro L. Granja., Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials, 2011. 32(31): p. 7897-904.
59. Reem, T., O. Tsur-Gang, and S. Cohen, The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFbeta1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials, 2010. 31(26): p. 6746-55.
60. Hunt, N.C., R.M. Shelton, and L. Grover, An alginate hydrogel matrix for the localised delivery of a fibroblast/ keratinocyte co-culture to expedite wound healing. Biotechnol, 2009. 4(5): p. 730-737.
61. Augst, A.D., H.J. Kong, and D.J. Mooney, Alginate hydrogels as biomaterials. Macromol Biosci, 2006. 6(8): p. 623-33.
62. Hayakawa, K., N. Sato, and T. Obinata, Dynamic reorientation of cultured cells and stress fibers under mechanical stress from periodic stretching. Exp Cell Res, 2001. 268(1): p. 104-14.
63. Jia Ping Li, Joost R. de Wijn, Clemens A. Van Blitterswijk, Klaas de Groot., Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials, 2006. 27(8): p. 1223-35.
64. S. S. Kerwar, George.J.Cardinale, Leonard D. Kohn, Carlos L. Spears, And Frans.L.H. Stassen., Cell-Free Synthesis of Procollagen_L-929 Fibroblasts as a Cellular Model for Dermatosparaxis. Molecular Biology, 1973. 70(5): p. 1378-1382.
65. John Paul Comstock and Sidney., Effect of Lactate on Collagen Proline Hydroxylase Activity in Cultured L-929 Fibroblasts. National Academy of Sciences, 1970. 66(2): p. 552-557
論文全文使用權限:不同意授權