現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:研製非有序的奈米金屬種子層並藉此控制具有遮蔽效應沉積的奈米螺旋結構 [以論文名稱查詢館藏系統]
論文英文名稱:Fabrication of irregular distributed metal particles for controlling the structure of shadow deposited nanohelices [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:104
畢業學期:第二學期
中文姓名:蕭智勇
英文姓名:HSIAO, CHIH-YUNG
研究生學號:103658053
學位類別:碩士
口試日期:2016/07/27
指導教授中文名:任貽均
口試委員中文名:陳昇暉;游竟維;黃逸帆;任貽均
中文關鍵詞:種子層、熱退火、斜向沉積、構螺旋結構
英文關鍵詞:Seed layer, Annealing, Glancing angle deposition, Helix array
論文中文摘要:本研究以高溫熱退火超薄金屬薄膜方式,製做非有序的奈米金屬種子層,分析金屬薄膜厚度對種子層的種子直徑(x)、間距(y)的影響程度,並比較金與銀兩種金屬在不同條件下熱退火後的種子層結構差異,以此方法,可以研製出平均銀種子層尺寸由密分佈(x, y) = (72.3 nm, 44.5 nm )到疏分佈(x, y) = ( 183.5 nm, 137.7 nm)以及平均金種子層尺寸由密分佈(x, y) = (45 nm, 40 nm )到疏分佈(x, y) = ( 200 nm, 170 nm)等不同種子層。
斜向沉積奈米螺旋結構在不同種子層上,製程沉積角為83、86和87度,基板自轉速率為0.0176 rpm以及0.023 rpm對應沉積速率0.3nm/s,藉由顆粒間的遮蔽效應,成長出螺旋結構,分析種子層對沉積結構的影響,結果發現螺旋線寬會受制於種子層的尺寸影響,相較平滑基板上所成長的螺旋結構線寬,小的種子會縮減線寬,而過大的種子尺度則會產生群聚纏繞的行為,將來可以以此方式控制奈米結構的生長。
論文英文摘要:In this research, ultra-thin silver and gold metal films with thicknesses from 5nm to 25nm are deposited and annealed after coating to develop irregular distributed seed layer. The influence of temperature of annealing and thickness of metal film on the size and density of metal particles are analyzed here. The average sized x and spacer y of silver and gold metal particles are (x, y) = (72.3 nm, 44.5 nm) and (x, y) = ( 183.5 nm, 137.7 nm) and (x, y) = (45 nm, 40 nm) and (x, y) = ( 200 nm, 170 nm) for dense and rare distribution, respectively.
Furthermore, nanohelices are deposited upon the seed layer using glancing angle deposition. Nanohelices are deposited at a deposition angle of 83, 86,87゚and substrate spin rate of 0.0176 rpm and 0.0234 rpm with respect to the deposition rate of 0.3nm/s. The shadowing effect is offered by the seed layer and the average arm width of nanohelices is affected by the size of seeds. Compared with the average arm width of nanohelices on a smooth surface, smaller sized seeds would lead to thinner arm width and larger sized seeds would cause helices overlap with each other.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 v
表目錄 vii
圖目錄 vii
第一章 緒論與文獻回顧 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1種子層技術 2
1.2.2表面電漿共振 8
1.2.3奈米雕刻薄膜 9
1.2.4製程溫度與結構生長關係 10
1.2.5三維手性結構 17
1.2.6螺旋結構之應用 20
1.3 研究動機 24
第二章 原理 25
2.1斜向沉積技術 25
2.2 蒸鍍通量與基板運轉原理 26
2.3種子層遮蔽效應 28
2.3.1種子層之改善 29
第三章 實驗與量測系統 30
3.1蒸鍍系統 30
3.1.1磁控濺鍍機(Megnetron Sputtering) 33
3.1.2快速熱退火爐(Rapid Thermal Annealing) 34
3.2蒸鍍流程與實驗前置作業 35
3.3光譜量測系統 37
3.3.1穿透式光譜儀 37
3.3.2旋光穿透式光譜儀 38
第四章 實驗結果分析與成因討論 39
4.1種子層薄膜與製程參數 39
4.1.1金奈米種子層光譜量測 42
4.2種子層上沉積金屬螺旋結構 45
4.2.1銀種子層上沉積金屬銀螺旋結構 45
4.2.2金種子層上沉積金屬金螺旋結構 53
4.2.2.1不同尺寸金種子層對金螺旋結構之影響 53
4.2.2.2金種子層對沉積快轉速金螺旋結構之影響 60
4.2.3金種子層上沉積金屬銀螺旋結構 63
第五章 結論 75
參考文獻 76
論文參考文獻:1.F. Chiadini and A. Lakhtakia, "Design of wideband circular-polarization filters made of chiral sculptured thin films", Microw. Opt. Technol. Lett., vol. 42, pp. 135-138 (2004).
2.K. Robbie, M. J. Brett & A. Lakhtakia, "Chiral sculptured thin films", Nature, 384, 616 (1996).
3.Maoz, B. M.; Chaikin, Y.; Tesler, A. B.; Bar Elli, O.; Fan, Z.;Govorov, A. O.; Markovich, G. "Amplification of ChiropticalActivity of Chiral Biomolecules by Surface Plasmons",NanoLett, 13, 1203–1209 (2013).
4.K. Robbie & M. J. Brett, "Sculptured thin films and glancing angle deposition: Growth mechanics and applications". J. Vac. Sci. Technol. A, 15, 1460-1465 (1997).
5.M. O. Jensen and M. J. Brett, "Periodically structured glancing angle deposition thin films", IEEE Trans. Nanotechnol. 4, 269–277 (2005).
6.A.T.Fiory, "Methods in rapid thermal annealing", Handbook of Bell Laboratories, Proceeding of RTP 2000, Eighth International Conference on Advanced Thermal Processing of Semiconductors, pp15-25 (2000).
7.Y. Fu, N.K.A. Bryan, "Fabrication and characterization of slanted nanopillars array",Journal of Vacuum Science and Technology B, 23 (3), pp. 984–989 (2005).
8.Liu Y. H. et al. "Metallic glass nanostructures of tunable shape and composition ". Nat. Commun. 6, 7043 (2015).
9.Paul R. Elliott, Stephen P. Stagon& Hanchen Huang, "Control of Separation and Diameter of Ag Nanorods throughSelf-organized Seeds ", Scientific Reports 5, Article number: 16826 doi:10.1038/srep16826 (2015).
10.W. Rechberger, A. Hohenau,A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Optics Communications, 220, 137 (2003).
11.K. Robbie and M.J. Brett., "Sculptured thin films and glancing angle deposition: Growth mechanics and applications," J. Vac. Sci. Technol. A, 15, 1460-1465 (1997)
12.Dhruv P. Singh, Pratibha Goel, and J. P. Singh, "Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures", Journal of Applied Physics. 112, 104324, 1-6 (2012).
13.G. K. Larsen, Y. He, J. Wang, and Y.-P. Zhao, "Scalable Fabrication of Composite Ti/Ag Plasmonic Helices: Controlling Morphology and Optical Activity by Tailoring Material Properties", Adv. Optical Mater. 2, 245-249 (2014).
14.Andrew G. Mark, John G. Gibbs, Tung-Chun Lee and Peer Fischer., "Hybrid nanocolloids with programmed three-dimensional shape and material composition", nature materials. 12.802-807 (2013).
15.Bettina Frank, Xinghui Yin, Martin Schaferling, Jun Zhao, Sven M. Hein, Paul V. Braun, and Harald Giessen., "Large-Area 3D Chiral Plasmonic Structires", ACS Nano. 7, 6321-6329 (2013).
16.Y.J. Jen et al., "Self-Shadowing Deposited Pure Metal Nanohelix Arrays and SERS Application ", Nanoscale Research Letters 10:498(2015).
17.Y.J. Jen et al., "Glancing angle deposited gold nanohelix arrays on smooth glass as three-dimensional SERS substrates", OPTICAL MATERIALS EXPRESS 704 (2016).
18.M. Esposito, V. Tasco, M. Cuscun, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, "Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies", ACS Photonics 2, 105–114 (2015).
19.Justyna K. Gansel, Michael Thiel, Michael S. Rill, Manuel Decker, Klaus Bade, Volker Saile, Georg von Freymann, Stefan Linden, Martin Wegener., "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer", Science. 325, 1513-1515 (2009).
20.Lakhtakia, A. and Messier, R.,"Sculptured thin films: Nanoengineered morphology and optics", Bellingham, WA, USA: SPIE Press (2005).
論文全文使用權限:不同意授權