現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:研製金屬-介電質對稱膜堆所組成之等效導納匹配膜 [以論文名稱查詢館藏系統]
論文英文名稱:Admittance matching of an equivalent layer composed of symmetrical metal-dielectric films [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:104
畢業學期:第二學期
中文姓名:林善文
英文姓名:Shan-Wen Lin
研究生學號:103658031
學位類別:碩士
語文別:中文
口試日期:2016/07/27
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen
口試委員中文名:陳昇暉;黃逸帆;游竟維
中文關鍵詞:薄膜光耦合歸一化導納軌跡圖導納匹配
英文關鍵詞:thin filmoptical couplernormalized admittance diagramadmittance matching
論文中文摘要:本文以金屬-介電質交互堆疊之對稱型多層膜結構,計算等效膜層之等效折射率與等效導納,並引入導納軌跡圖像式的設計方式,設計與入射介質匹配之等效導納。在對稱型多層膜堆設計中,利用導納軌跡圖像式的設計方式,分析其介質二氧化矽薄膜與金屬鉻薄膜之導納軌跡,再經由適當的調整各膜層之厚度,可分別於三層及五層對稱型結構中展現出良好之導納匹配特性,且經由此種方式設計之對稱型多層膜結構,同時具有廣波域之特性,其中五層對稱型結構所展現之廣波域導納匹配之特性優於三層對稱型結構,廣波域波段可從400nm到1000nm。在實際鍍膜實驗中,以電子束蒸鍍槍沉積二氧化矽薄膜,並利用磁控濺鍍法沉積超薄鉻金屬薄膜,並依據實驗量測的穿透與反射光譜,推算其薄膜光學常數,藉以修正膜堆之設計,以達導納匹配之最佳化。
論文英文摘要:The equivalent refractive index and admittance of an equivalent layer composed of alternatively arranged metal(M)-dielectric(D) films are calculated and considered separately. Based on the admittance matching condition developed on the normalized admittance diagram, three layered and five-layered multilayers are then designed to perform light coupling effect. It is found that using silica (SiO2) film and chromium (Cr) film as dielectric and metal films can reach well admittance matching condition. Three layered DMD and five-layered DMDMD symmetrical layers are deposited according to the admittance matching design. The equivalent admittance of the five-layered structure keeps around the index of cover medium over a broad wavelength ranged from 400nm to 1000nm. In fabrication, the SiO2 films are deposited with electron beam evaporation and the Cr films are deposited with sputtering deposition. The actual optical constants of each film are measured for redesign of admittance matching to reach optimum admittance matching.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 前言與文獻回顧 1
1.1 光吸收器 1
1.2 週期性之對稱型多層膜結構 2
1.3 非週期性之多層膜結構 9
1.4 研究動機 13
第二章 原理 14
2.1 膜矩陣 14
2.1.1 單層膜矩陣 14
2.1.2 多層膜矩陣 16
2.1.3 金屬膜矩陣 16
2.2 導納軌跡法 17
2.2.1 單層膜等效導納 17
2.2.2 金屬膜導納軌跡 19
第三章 設計與模擬 21
3.1 對稱型金屬-介電質吸收器之設計方式 21
3.1.1 設定設計目標 21
3.1.2 材料選擇 21
3.1.3 設計對稱型三層結構 22
3.1.4 設計對稱型五層結構(ABABA) 23
3.1.5 設計對稱型五層結構(ABCBA) 26
3.2 多層膜吸收器之設計結果 27
3.2.1 量測材料光學常數(鉻、二氧化矽) 27
3.2.2 多層膜(ABCBA)吸收器之最終組態 28
3.2.3 模擬結論 30
第四章 實驗與量測系統 33
4.1 鍍膜系統 33
4.1.1 物理氣象沉積法 33
4.1.2 真空抽氣系統 33
4.1.3 冷卻系統 34
4.2 量測系統 34
4.2.1 橢圓偏光術語量測 34
4.2.2 橢圓偏光儀之光學常數分析 36
4.2.3 光譜儀量測系統 37
第五章 實驗過程與結果 38
5.1 實驗流程 38
5.2 實驗過程及結果 40
5.2.1 多層膜堆疊之吸收器樣品(一) 40
5.2.2 樣品(一)之實驗檢討 41
5.2.3 樣品(一)之實驗改善 42
5.2.4 多層膜堆疊之吸收器成品 44
5.2.5 成品結果之檢討 45
第六章 結論 50
參考文獻 52
論文參考文獻:1. F. Ding, L. Mo, J. F. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber”, Appl. Phys. 106, 061108 (2015).
2. H. M. Song, L. Guo, Z. J. Liu, K. Liu, X. Zeng, D. G. Ji, N. Zhang, H. F. Hu, S. H. Jiang, and Q. Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber”, Adv. Mater. 26, 2737-2743 (2014).
3. H. I. Deng, Z. G. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. D. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal”, Opt. Ltt. 40(11) (2015).
4. X. F. Li, Y. R. Chen, J. Miao, P. Zhou, Y. X. Zheng, and L. Y. Chen, “High solar absorption of a multilayered thin film structure”, Opt. exp, 15(4), 1907 (2007).
5. T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces”, Nat Photonics 2,299 (2008).
6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices”, Nat, Mater. 9, 205 (2010).
7. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics”, Opt, Express21, A96 (2013).
8. C. Wu, B. Neuner III, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, J. “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems”, J. Opt. 14, 024005 (2012).
9. H. Deng T. Wang, J Gao, and X. Yang, J. “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics”, J. Opt. 16, 035102 (2014).
10. N. I. Landy, C. M. Bingham, T. Tler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging”, Phys. Rev. B 79, 125104 (2009).
11. Marcus Diem, Thomas Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime”, Phys. Rev. B79, 033101 (2009).
12. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters”, Rev. Lett. 107, 045901 (2011).
13. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor”, Nano Lett, 10(7), 2342-2348 (2010).
14. R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements”, Adv Mat. 10. 1002 (2009).
15. B. J. Lee and Z. M. Zhang, J. “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics”, Appl. Phys. 100, 063529 (2006).
16. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers”, Nat. Commun. 2, 517 (2011).
17. Y. Q. Ye, Y. Jin, and S. He, J. “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime”, Opt. Soc. Am. B 27, 498 (2010).
18. W. Wang, Y. Cui, Y. He, Y. Hao, Y. Lin, X. Tian, T. Ji, and S. He, “Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate”, Opt. Lett. 39, 331 (2014).
19. N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterals make metals absorbing”, Sci. Rep. 3, 3203 (2013).
20. Y. Cui, K. H. Fung J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtoth anisotropic metamaterial slab”, Nano Lett, 12, 1443 (2012).
21. J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial arry”, ACSPhotonics 1, 618 (2014).
22. 欒丕綱 陳啟昌,光子晶體-從蝴蝶翅膀到奈米光子學,五南圖書出版股份有限公司(2016).
23. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystal molding the flow of light”, 2nd edition, Princeton Univ (2008).
24. A. Beiser, “Modern physics,” 6th Editon, pp. 335-386, McGraw-Hill Press (2003).
25. 李正中,光學薄膜與鍍膜技術,藝軒圖書出版社 (2012).
26. Z. G. Li, Edgar Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large area, ultrathin lossy metallic film coatings”, Sci. Rep. 5, 15137 (2015).
27. C. Y. Yang, C. G. Ji, W. D. Shen, K. T. Lee, Y. G. Zhang, Xu Liu, and L. Jay Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption”, ACSPhotonics, 3(4), 590-596 (2016).
28. Jeremy A. Bossard, Lan Lin, Seokho Yum, Liu Liu, Douglas H. Werner, and Theresa S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth”, ACS Nano, 8(2) (2014).
29. H. A. Macleod, Thin-Film optical filters 4th edition, London: CRC Press (2010).
30. V. Lozanova, A. Lalova, L. Soserov, and R. Todrov, “Optical electrical properties of very thin chromium films for optoelectronic devices”, IOP Sci, 514, 012003 (2014).
論文全文使用權限:不同意授權