現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:筆記型電腦之消費者行為研究分析 - 以商務人士為例 [以論文名稱查詢館藏系統]
論文英文名稱:The Study of Consumer Behaviors of Notebook - Base on Business People [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:管理學院
系所名稱:管理學院資訊與財金管理EMBA專班
畢業學年度:104
畢業學期:第二學期
出版年度:105
中文姓名:洪健棠
英文姓名:Chien-Tang Hung
研究生學號:103C23506
學位類別:碩士
語文別:中文
口試日期:2016/05/27
指導教授中文名:吳建文
指導教授英文名:Chien-Wen Wu
口試委員中文名:陳育威;李炯三
中文關鍵詞:筆記型電腦消費者行為關聯規則高頻項目集
英文關鍵詞:NotebookCustomer BehaviorAssociation RulesFrequent Itemset
論文中文摘要:由於筆記型電腦對於一般民眾而言,屬於相對高單價的產品,因此消費者在購買時常會考慮到品牌的因素,間接造成筆記型電腦產業市場集中度高的特性。然而,在這個消費者導向的市場中,只有顧客滿意度是無法創造忠誠客戶的,筆記型電腦品牌廠商除了仍要不斷地滿足顧客之外,尚須考慮到其他影響品牌忠誠度的因素。因此,若是能進一步了解消費者行為、習慣、產品認知與品牌忠誠度之間的關聯性,透過消費者洞察(consumer insight),了解消費者的心理思維,才能讓品牌深植消費者的心中。
本研究為了能更徹底的了解消費者行為、心理上的認知與品牌忠誠度之間的關係,透過文獻探討及腦力激盪法來設計問卷調查之研究方式,針對台北地區的商務人士做網路問卷調查,之後再以關聯規則之高頻項目集探勘技術,分析所蒐集的資料,試圖找出筆記型電腦消費者,其使用筆記型電腦規格、使用習慣、產品認知乃至於品牌忠誠度之間的關聯性和規則。
論文英文摘要:Since the notebook for the general public perception is a relatively high price of the product, so consumers often taking into account the brand factor when they buy it, thus indirectly causing the notebook market with a high concentration of industrial characteristic.
However, in this consumer-oriented market, only customer satisfaction is unable to create loyal customers, in addition to notebook brands still continue to meet customer outside, yet taking into account other factors that affect brand loyalty.
Therefore, if we can get more about the relevance of consumer behavior, habits, product awareness and brand loyalty that through the consumer insight and understand the consumer psychology of thinking to make the brand deeply rooted in the minds of consumers.
In this study, in order to more thoroughly understand the relationship between consumer behavior, cognitive psychological and brand loyalty through literature review and brainstorming to design the survey of research methods and aim at the business people in Taipei to do the web questionnaire investigation, then later set the project at a high frequency of association rules mining technology to analyze collected data, trying to find out the association rules between using notebook specifications, usage, product knowledge and even brand loyalty.
論文目次:摘 要 I
ABSTRACT II
誌謝 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍 3
1.4 研究流程與架構 3
第二章 文獻探討 4
2.1 筆記型電腦定義與全球產業發展現況 4
2.1.1筆記型電腦定義 4
2.1.2筆記型電腦產業發展及現況 4
2.2 消費者行為理論 7
2.3 消費者行為模式 9
2.3.1 Nicosia消費者行為模式 9
2.3.2 EKB消費者行為模式 11
2.3.3 Howard-Sheth消費者行為模式 13
2.3.4 Kotler消費者行為模式 14
2.4 科技接受模式定義 15
2.5 顧客滿意度定義 16
2.6 顧客忠誠度定義 17
2.7 關聯規則 18
第三章 研究方法 20
3.1 研究步驟 20
3.2 問卷設計 21
3.3 資料蒐集與整理 21
3.4 項目集探勘分析 21
第四章 資料分析與研究結果 22
4.1 資料的敘述性統計分析 22
4.1.1 社會背景之「個人基本資料」統計 22
4.1.2「購買資料與一般使用習慣」統計 24
4.1.3「產品認知與行為態度」統計 29
4.1.3「購買意圖、滿意度與品牌忠誠度表現」統計 33
4.2 關聯式法則分析 36
第五章 研究結論與建議 39
5.1 研究結論 39
5.1.1 個別項目統計分析結論 39
5.1.2 所有項目的關聯式規則分析結論 40
5.2 研究限制與未來研究方向建議 42
5.2.1研究限制 42
5.2.2未來研究方向建議 42
參考文獻 43
附錄 46
一、問卷項目與代碼對照表 46
論文參考文獻:[1] 謝堅宏,1997,臺北地區筆記型電腦品牌忠誠度之研究,碩士論文,國立中興大學企業管理學系,臺北。
[2] 鄧為元,2012,顧客滿意度與品牌忠誠度的關係--以筆記型電腦為例,碩士論文,國立中山大學企業管理學系,高雄。
[3] 陳正男 (1996)。行銷管理,第三版,台北,三民書局。
[4] 林靈宏、張魁峯(2006)。消費者行為學。台北:五南圖書。
[5] 榮泰生(2007)。消費者行為-Consumer Behavior。台北:五南圖書。
[6] Roth, M.S. (1995). Effects of global market conditions on brand image customization and brand performance. Journal of Advertising, 24(4), 55-72.
[7] Hamilton K.(1998). Building loyalty through consumer insight, SPC. Soap, Perfumery, and Cosmetics, 71(8), 19.
[8] Hawkins, D. I. , Best, R. J. , & Coney, K. A. (1992). Consumer Behavior: Implications for Marketing Strategy..
[9] Solomon, M. R. (2014). Consumer behavior: buying, having, and being. Engelwood Cliffs, NJ: Prentice Hall.
[10] Walters, C. G., & Paul, W. G., Consumer Behaviors: An Integrated Framework,Richard, D. Irwin Inc., 1970, p.7.
[11] Demby, Emamuel, “Psychographics and Form Where It Comes, ”Lifestyle and Psychographics, William D.Wells Edition, Chicago:AMA, p.22, 1973.
[12] Williams, T. G., Consumer Behavior Fundamental and Strategies, St. Paul Minn: West Publishing Co., p.5, 1982.
[13] Schiffman, L. G., & Kanuk L. L. (1991) . Research Methods in Phvsical. Champagin, IL:Human Kinetics.
[14] Engel, J. F., R. D. Blackwell, and P. W. Miniard (1993), Consumer Behavior, 7th ed.,
[15] Kotler, P. (1998). Marketing management: Analysis Planning, Implementation and control (9th ed.). Englewood Cliffs, NJ: Prentice-Hall.
[16] Nicosia, F.M.(1966), Consumer Decision Process. Englewood: Prentice Hall Inc.
[17] Engel, J.F., Kollat, D.T. and Blackwell R.D., (1984), Consumer Behavior, 3rd Ed., Prentice Hall Inc.
[18] Howard, J.A. & J. N. Sheth (1969), The Theory of Buyer Behavior, New York: John Willey and Sons.
[19] Davis, F.D. (1989). “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology, ” MIS Quarterly (13:3), September 1989, pp.319-342
[20] Stum, David, L. & Alain, T.(1991), “Building Customer Loyalty,” Training and Development Journal, Vol.45, pp.30-40.
[21] Zeithaml, V. A. (2000), & Bitner, M. J.,Services Marketing: Integrating Customer Focus Across the Firm, McGraw-Hill, Madison.
[22] Anderson, E. W., Fornell, C., & Lehmann D. R.(1994), “Customer satisfaction, market share and profitability: Findings from Sweden.,” Journal of Marketing, Vol. 58, pp.53-64.
[23] Jacoby, J., and Chestnut, R. W. (1978). Brand Loyalty: Measurement and Management. New York: Wiley.
[24] Jones, T. O. and Sasser W. E. Jr, (1995). Why Satisfied Customer Defect, Harvard Business Review, 73(6), pp. 88-99.
[25] Griffin, J. (1995). Customer loyalty: How to earn It and how to keep It, Le, New York: Lexington Books.
[26] Oliver, Richard L. (1997). Satisfaction: A Behavioral Perception the Consumer, New York: Irwin / Mcgraw-Hill, pp.418-430.
[27] Muller, W. (1991). Gaining Competitive Advantage through Customer Satisfaction, European Management Journal, 9(2), pp. 201-221.
[28] Agrawal, R., Srikant, R. (1994). Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile. p. 487-499.
[29] Burdick, D., Calimlim, M., Gehrke, J. (2001). MAFIA: a maximal frequent itemset algorithm for transactional databases. In: Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany. p. 443-452.
[30] Agarwal, R.C., Aggarwal, C.C., Parsad, V.V.V. (2001). A tree projection algorithm for generation of frequent itemsets. Journal of Parallel and Distributed Computing; 61(3):350-71.
[31] Gouda, K., Zaki, M.J. (2000). Efficiently mining maximal frequent itemsets. In: Proceedings of IEEE International Conference on Data Mining, San Jose, USA. p. 163-70.
[32] Zou, Q., Chu, W.W., Lu, B. (2002). SmartMiner: a depth first algorithm guided by tail information for mining maximal frequent itemsets. In: Proceedings of IEEE International Conference on Data Mining, Maebashi City, Japan. p. 570-77.
[33] 經濟部統計處,2011,經濟部工業產品分類(第15次修訂) (2011年8月)
[34] 筆記型電腦,維基百科,2016
https://zh.wikipedia.org/wiki/%E7%AD%86%E8%A8%98%E5%9E%8B%E9%9B%BB%E8%85%A6
[35] Hancom Office,維基百科,2016
https://en.wikipedia.org/wiki/Hancom#Hancom_Office
[36] Notebook Shipments,TrendForce Reports,2016
http://press.trendforce.com/press/20160216-2327.html
[37] 2-in-1 PC,維基百科,2016
https://en.wikipedia.org/wiki/2-in-1_PC
[38] Skylake (microarchitecture),維基百科,2016
https://en.wikipedia.org/wiki/Skylake_(microarchitecture)
[39] 40 Top Free Data Mining Software,2016
http://www.predictiveanalyticstoday.com/top-free-data-mining-software/
論文全文使用權限:同意授權於2019-08-09起公開