現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:微小型有機朗肯循環針對廢熱使用 之實驗探討 [以論文名稱查詢館藏系統]
論文英文名稱:Experimental investigation of micro and small organic Rankine cycle for waste heat using [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:機電整合研究所
畢業學年度:104
畢業學期:第二學期
中文姓名:吳家榮
英文姓名:WU CHIA-JUNG
研究生學號:103408041
學位類別:碩士
語文別:中文
口試日期:2016/06/28
指導教授中文名:洪祖全
指導教授英文名:Tzu-Chen Hung
口試委員中文名:洪祖全;黃建華;白寶實;林志宏
中文關鍵詞:有機朗肯循環渦卷膨脹器廢熱回收
英文關鍵詞:Organic Rankine cyclescroll expanderwaste heat recovery
論文中文摘要:本文針對微型與小型有機朗肯循環 (Organic Rankine Cycle, ORC)發電系統建立與比較,並模擬實際廢熱使用設計實驗進行測試。本研究先建構微型機組,試驗系統穩定性,再將微型機組之經驗延續,搭建小型機組,並進行模擬實際廢熱使用之實驗。
微型機組進行5種實驗測試,不同輸入熱量、不同系統過熱度、改變熱源流量、改變冷卻水流量、及不同壓力範圍。除了測試系統穩定性外,另一方面研究模擬實際廢熱使用之實驗結果與現象。發現到系統輸入熱量增加,系統效率有上升的趨勢;系統過熱度越大,系統熱電效率越好;熱源流量越大、冷卻水流量越大,朗肯循環在T-s圖上面積越大,系統效率與發電量也會提升;在不同壓力範圍實驗中發現,有機朗肯循環在高緯度地區運轉會有較佳的效率。
在確定系統穩定性後,小型機組針對實際廢熱使用之實驗進行測試,以不同輸入熱量實驗、改變熱源流量實驗、及改變冷卻水流量實驗以上3種實驗,驗證實驗結果與趨勢,其實驗結果與微型機組相同。最後比較微型與小型機組效率,小型有機朗肯循環機組操作熱源範圍為53 kW至113 kW,對應熱源溫度範圍為89.7℃至123.5℃,微型有機朗肯循環機組操作熱源範圍為15.8 kW至42.4 kW,對應熱源溫度範圍為81.5℃至118.3℃,小型機組最佳熱電效率為4.59%,最大發電量為6.32 kW,微型機組最佳熱電效率為3.91%,可以產生2.1 kW的發電量。
論文英文摘要:The present study focus on development and comparison of small-scale and micro-scale organic Rankine cycle (ORC) systems for power generation applying to waste heat recovery. First, micro-scale system was designed and built to test system stability. Then based on the micro-scale system’s experience and results small-scale system has been designed and constructed.
Five kinds of experiments were operated by micro-scale system: changing system heat input, changing expander inlet superheating degree, different heat source and cooling water flow rate and changing operating pressure range. Not only system stability is tested, but also simulating the real waste heat condition. Results shown, when system heat input increased electrical efficiency also increased. When increasing heat source and cooling water flow rate, the area of Rankine cycle in T-s diagram also increasing. Cycle thermal efficiency and electrical power output also will be higher. Different operating pressure range experiment shows, ORC system will have better performance when operating at lower ambient temperature.
After system stability testing, small-scale system operated by changing system heat input, different heat source and cooling water flow rate conditions. The results shown that both micro-scale and small-scale system have same operation trends and results. By comparing two system’s efficiencies: small-scale ORC system is operated between 53 kW to 113 kW of heat input, corresponding temperature from 89.7˚C to 123.5˚C while micro-scale ORC system is operated between 15.8 kW to 43.4 kW of heat input, corresponding temperature from 81.5˚C to 118.3˚C. Small-scale system’s best electrical efficiency and electrical power output are 4.59% and 6.32 kW respectively, and micro-scale system are 3.91% and 2.1 kW respectively.
論文目次:第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究動機與目的 8
1.4 研究流程圖 9
第二章 理論分析 10
2.1 熱力學方程式 11
2.2 實際熱源使用之模擬計算 13
2.2.1 相同熱源流量下改變輸入熱量 13
2.2.2 固定熱源入口溫度改變熱源流量 16
2.2.3 固定輸入熱量改變冷卻水流量 19
第三章 實驗系統架設 22
3.1 實驗系統環路 22
3.2 實驗系統元件 26
3.2.1 幫浦 26
3.2.2 熱交換器與系統熱源 28
3.2.3 膨脹器 30
3.2.4 油幫浦與潤滑油 34
3.2.5 儲液桶與冷卻源 35
3.2.6 再生器 36
3.2.7 油分離器 37
3.2.8 發電機 38
第四章 結果與討論 40
4.1 KNT030機組實驗結果 40
4.1.1 不同輸入熱量 40
4.1.2 不同過熱度 45
4.1.3 改變熱源流量 48
4.1.4 改變冷卻水流量 52
4.1.5 不同壓力範圍 56
4.2 KNT100機組實驗結果 62
4.2.1 不同輸入熱量 62
4.2.2 改變熱源流量 66
4.2.3 改變冷卻水流量 68
4.2.4 再生器的影響 71
4.3 KNT030與KNT100機組比較 80
4.4 KNT100系統改良 82
第五章 結論 84
第六章 未來工作 87
參考文獻 89
附錄 93
附錄A 熱油槽油位不平衡問題改善 93
附錄B 三通球閥內漏問題 95
附錄C KNT030機組於不同過熱度運轉下冷凍油位與儲液桶液位相對關係 97
符號彙編 99
論文參考文獻:1.UNEP. “Projections of Future Climate Change. 2001.
2.Bureau of Energy, Ministry of Economic Affairs, R.O.C.
3.Scopus. http://www.scopus.com/
4.U.S. DOE, “Waste heat recovery: technology and opportunities in U.S. Industry. 2008,”
5.T. C. Hung, “Waste heat recovery of organic Rankine cycle using dry fluids.” Energy Conversion and Management, Vol. 42, 2001, pp. 539-553.
6.Z. Q. Wang, N. J. Zhou, J. Guo, X. Y. Wang, “Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat,” Energy, Vol. 40, 2012, pp. 107-115.
7.A. A. Lakew, O. Bolland, “Working fluids for low-temperature heat source,” Applied Thermal Engineering, Vol. 30, 2010, pp. 1262-1268.
8.B. Saleh, G. Koglbauer, M. Wendland, J. Fischer, “Working fluids for low-temperature organic Rankine cycles,” Energy, Vol. 32, 2007, pp. 1210-1221.
9.T. C. Hung, S. K. Wang, C. H. Kuo, B. S. Pei, K. F. Tsai, “A study of organic working fluids on system efficiency of an ORC using low-grade energy sources,” Energy, Vol. 35, 2010, pp. 1403-1411.
10.E. Yun, D. Kim, S. Y. Yoon, K. C. Kim, “Experimental investigation of an organic Rankine cycle with multiple expanders used in parallel,” Applied Energy, Vol. 145, 2015, pp. 246-254.
11.A. Desideri, M. V. D. Broek, S. Gusev, V. Lemort, S. Quoilin, “Experimental campaign and modeling of a low-capacity waste heat recovery system based on a single screw expander,” 22nd International Compressor Engineering Conference at Purdue, July 14-17, 2014.
12.Y. Q. Zhang, Y. T. Wu, G. D. Xia, C. F. Ma, W. N. Ji, S. W. Liu, K. Yang, F. B. Yang, “Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine,” Energy, Vol. 77, 2014, pp. 499-508.
13.R. Bracco, S. Clemente, D. Micheli, M. Reini, “Experimental tests and modelization of a domestic-scale ORC (Organic Rankine Cycle),” Energy, Vol. 58, 2013, pp. 107-116.
14.S. Declaye, S. Quoilin, L. Guillaume, V. Lemort, “Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid,” Energy, Vol. 55, 2013, pp. 173-183.
15.G. Qiu, Y. Shao, J. Li, H. Liu, Saffa .B. Riffat, “Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications,” Fuel, Vol. 96, 2012, pp. 374-382.
16.Aleksandra Borsukiewicz-Gozdur, “Experimental investigation of R227ea applied as working fluid in the ORC power plant with hermetic turbogenerator,” Applied Thermal Engineering, Vol. 56, 2013, pp. 126-133.
17.V. Lemort, S. Declaye, and S. Quoilin, “Experimental characterization of a hermetic scroll expander for use in a micro-scale Rankine cycle,” Thermodynamics Laboratory, Proceedings of the Institution of Mechanical Engineer, Part A: Journal of Power and Energy, Vol. 226, 2012, pp. 126-136.
18.S. Quoilin, V. Lemort, J. Lebrun, “Experimental study and modeling of an Organic Rankine Cycle using scroll expander,” Applied Energy, Vol. 87, 2010, pp. 1260-1268.
19.V. M. Nguyen, P. S. Doherty, S.B. Riffat, “Development of a prototype low-temperature Rankine cycle electricity generation system,” Applied Thermal Engineering, Vol. 21, 2001, pp. 169-181.
20.H. Wang, R. Peterson, K. Harada, E. Miller, R. Ingram-Goble, L. Fisher, J. Yih, C. Ward, “Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling,” Energy, Vol. 36, 2011, pp. 447-458.
21.S. Declaye, S. Quoilin, L. Guillaume, V. Lemort, “Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid,” Energy, Vol. 55, 2013, pp. 173-183.
22.R. B. Peterson, H. Wang, T. Herron, “Performance of a small-scale regenerative Rankine power cycle employing a scroll expander,” Proceedings of the Institution of Mechanical Engineer, Part A: Journal of Power and Energy, Vol. 222, 2008, pp. 271-282.
23.H. J. Kim, J. M. Ahn, I. Park, P. C. Rha, “Scroll expander for power generation from a low-grade steam source,” Proceedings of the Institution of Mechanical Engineer, Part A: Journal of Power and Energy, Vol. 221, 2007, pp. 705-712.
24.T. Yanagisawa, M. Fukuta, Y. Ogi, T. Hikichi, “Performance of an oil-free scroll-type air expander,” Proc. of the ImechE Conf. Trans. On compressors and thrir systems, 2001, pp. 167-174.
25.G. Liu, Y. Zhao, L. Li, P. Shu, “Simulation and experiment research on wide ranging working process of scroll expander driven by compressed air,” Applied Thermal Engineering, Vol. 30, 2010, pp. 2073-2079.
26.S. Clemente, D. Micheli, M. Reini, R. Taccani, “Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative applications,” Applied Energy, Vol. 97, 2012, pp. 792-801.
27.張兆偉,渦卷膨脹器於有機朗肯循環之實驗探討與數值分析,博士論文,國立臺北科技大學機電整合研究所,臺北,2014。
28.H. Wang, R. B. Peterson, T. Herron, “Experimental performance of a compliant scroll expander for an organic Rankine cycle,” Proceedings of the Institution Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 223, 2009, pp. 863 -872.
29.R. Zanelli, D. Favrat, “Experimental Investigation of a hermetic scroll expander-generator,” International Compressor Engineering Conference, 1994, pp. 459-464.
30.T. Saitoh, N. Yamada, S. Wakashima, “Solar Rankine cycle system using scroll expander,” Journal of Environment and Engineering, Vol. 2, 2007, pp. 708 -719.
31.J.P. Roy, A. Misra, “Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery,” Energy, Vol. 39, 2012, pp. 227-235.
32.J. Zhang, H. Zhang, K. Yang, F. Yang, Z. Wang, G. Zhao, H. Liu, E. Wang, B. Yao, “Performance analysis of regenerative organic Rankine cycle using the pure working fluid and the zeotropic mixture over the whole operating range of a diesel engine,” Energy Conversion and Management, Vol. 84, 2014, pp. 282-294.
33.M. Li, J. Wang, W. He, L. Gao, B. Wang, S. Ma, Y. Dai, “Construction and preliminary test of a low-temperature regenerative Organic Rankine Cycle (ORC) using R123,” Renewable Energy, Vol. 57, pp. 216-222.
34.張仁傑,微型有機朗肯循環發電系統建立,博士論文,國立臺北科技大學機電科技研究所,臺北,2015。
35.http://www.wulipump.com/big5/product_content.php?P_Id=503&T_Id=116&PT_Id=29&page=1
36.http://www.walruspump.com/zh-tw/product/detail/407
37.J. C. Chang, T. C. Hung, Y. L. He, W. Zhang, “Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander,” Applied Energy, Vol. 155, 2015, pp. 150-159.
論文全文使用權限:同意授權於2016-08-03起公開