現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以無碘氧化還原對作為電解液應用於染料敏化太陽能電池 [以論文名稱查詢館藏系統]
論文英文名稱:Iodine-free redox couples as the electrolyte and apply in Dye-Sensitized Solar Cells [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:104
畢業學期:第二學期
中文姓名:范鴻諒
英文姓名:Hong-Liang Fan
研究生學號:103738052
學位類別:碩士
語文別:中文
口試日期:2016/06/20
指導教授中文名:黃聲東
指導教授英文名:Sheng-Tung Huang
口試委員中文名:楊重光;王錫福;張曉暉
中文關鍵詞:染料敏化太陽能電池、膠態電解液、離子液體、無碘、奈米碳管
英文關鍵詞:Dye-sensitized solar cells, gel electrolyte, ionic liquids, iodide-free, carbon nanotubes
論文中文摘要:染料敏化太陽能電池由於製作簡單、價格便宜、轉換效率高,近20年來成為學者注目的焦點,被認為是具有市場潛力的新型太陽能電池之一。在電池組成當中,電解質在染料敏化太陽能電池為很重要的一環,扮演著橋樑的角色,擔負著還原染料、輸送電子完成電池內部循環的作用,電解液的不同會影響電池的效率,目前最為廣為使用的電解液是利用碘作為氧化還原電對,有著高效率,但是碘有許多缺點,包括腐蝕金屬、碘的昇華,進而影響到長效性,以及商業化。

為了克服以上的問題,取代碘氧化還原對是相當重要的,本研究選擇叔丁基對苯二酚(TBH)作為氧化還原電對,合成EPII離子液體,以及使用商業化DMPII離子液體作為無碘之電解液,在金屬錯合物染料N719以及有機染料MK2染料的情況下進行效能測試,並且選擇EPII與DMPII無碘電解液藉由加入奈米碳管(CNT)來增加導電度,增加電池效能。為了解決電池長效穩定性的問題,我們使用高分子PVDF–HFP,配置成膠態電解液,以I-V curve、IPCE與EIS、CPS+ 儀器對電池進行光電性質的測試,分別測試光電轉換效率、入射單色光子-電子轉換效率、電池內部電阻之間的變化,以及電池在照受光源1000小時下之效率變化,觀測電池元件之長效性。
論文英文摘要:DSSCs are emerged as economical and efficient photovoltaics for the energy conversion of abundant solar light into electricity which as promising progress in the past two decades. Despite the appreciable power conversion efficiency obtained by the Iodide/triiodide (I−/I3-) electrolyte, it imposed several limitations for commercial applications such as, lowering short circuit current due to absorption in blue part, corrosion of metal current collectors, high evaporation rate, sublimation of iodine and potential mismatch between I−/I3- redox potential. In order to overcome the aforementioned shortcomings of I−/I3-, the development of innovative redox mediators is highly important. Herein, we have developed iodine free, non-corrosive, and non-volatile electrolyte system based on tertiary butyl hydroquinone (TBH) redox pair coupled with propargyl and ethyl functionalized imidazolium ionic liquid (EPII), and DMPII ionic liquid and fabricated efficient and cheaper quasi-solid state gel type DSSCs. The dyes such as, N719 and MK2 and metal oxides TiO2 was used in our study and in order to enhance the conductivity and performance, carbon nanotubes (CNT) were added in the electrolyte. After the completion of cell fabrication, we used I-V curve, incident photon current efficiency (IPCE), EIS, CPS + to test the photoelectric properties of the cell such as conversion efficiency, the cells internal resistance and long-term stability. At optimum fabrication conditions, TBH and EPII incorporated DSSCs have shown comparable results with conventional DSSCs consisting of I−/I3-. Besides, gel-type electrolytes were fabricated with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF–HFP) which facilitated long-term stability. The TBH, EPII and DMPII based electrolytes have great potential in the fabrication of cheaper photovoltaics with advantages of iodine-free, non-volatile, gel-type, and long-term stability.
論文目次:摘 要 I
Abstract II
誌 謝 IV
圖目錄 IX
表目錄 XII
第一章 前言 1
第二章 文獻回顧 3
2.1 染料敏化太陽能電池 3
2.2 染料敏化太陽能電池的工作原理 4
2.3工作電極 7
2.4 染料 8
2.4.1 金屬錯合物染料 8
2.4.2 有機染料 10
2.5 電解液 12
2.5.1 液態電解液 13
2.5.2 擬固態(膠態)電解液 14
2.5.3 固態電解液 15
2.5.4 離子液體電解液 15
2.5.5 碳奈米材料應用於電解液 17
2.6 研究動機與目的 18
第三章 實驗藥品與儀器 19
3.1 實驗藥品 19
3.2 實驗儀器 20
3.3 染料敏化太陽能電池檢測儀器 21
3.3.1 光電轉換效率分析(I-V Curve) 21
3.3.2 入射單色光子-電子轉換效率(IPCE) 24
3.3.3 電化學阻抗分析(EIS) 25
3.3.4 長效穩定度測試(Long-term Stability) 29
第四章 實驗方法與流程 30
4.1離子液體3-ethyl-1-(prop-2-yn-1-yl)-1H-imidazol-3-ium iodide (EPII)之合成 30
4.2實驗流程圖 31
4.3染料敏化太陽能電池元件的製備與組裝 32
4.3.1染料敏化太陽能電池的製備流程圖 32
4.3.2 FTO導電玻璃之清洗 33
4.3.3工作電極之製備 33
4.3.4 反電極的製備 33
4.3.5 電解液的製備 34
4.3.6染料敏化太陽能電池的封裝 36
第五章 結果與討論 37
5.1染料為N719對染料敏化太陽能電池效率的影響 37
5.1.1 電壓-電流特性曲線量測之分析結果 37
5.1.2 加入CNT對於EPII電解液之效率影響 40
5.1.3 加入CNT對於DMPII電解液之效率影響 42
5.2入射單色光子-電子轉換效率(IPCE)之分析結果45
5.2.1 膠態液態電解質之IPCE測試結果 45
5.2.2 加入CNT對於EPII電解液之IPCE測試結果 47
5.2.3 加入CNT對於DMPII電解液之IPCE測試結果 48
5.3電化學交流阻抗(EIS)之分析結果 50
5.3.1 膠態液態電解質之電化學阻抗EIS分析結果 50
5.3.2 加入CNT對於EPII電解液之EIS分析結果 52
5.3.3 加入CNT對於DMPII電解液之EIS分析結果 55
5.4長效穩定性測試 57
5.4.1 液態及膠態電解液之長效穩定性測試 57
5.4.2 CNT最佳條件之膠態長效穩定性測試 58
5.5染料為MK2對染料敏化太陽能電池效率的影響 59
5.5.1電壓-電流特性曲線量測之分析結果 59
5.5.2 加入CNT對於EPII電解液之效率影響 61
5.5.3 加入CNT對於DMPII電解液之效率影響 64
5.6 入射單色光子-電子轉換效率(IPCE)之分析結果67
5.6.1膠態液態電解質之IPCE測試結果 67
5.6.2加入CNT對於EPII電解液之IPCE測試結果 68
5.6.3加入CNT對於DMPII電解液之IPCE測試結果 70
5.7電化學交流阻抗(EIS)之分析結果 71
5.7.1 膠態液態電解質之電化學阻抗EIS分析結果 71
5.7.2 加入CNT對於EPII電解液之EIS分析結果 74
5.7.3 加入CNT對於DMPII電解液之EIS分析結果 76
5.8長效穩定性測試 79
5.8.1 液態及膠態電解質之長效穩定性測試 79
5.8.2 CNT最佳條件之膠態長效穩定性測試 80
第六章 結論 81
參考文獻 83
附錄一 88
1.1 PYI 1HNMR圖譜 88
1.2 EPII 1HNMR圖譜 89
1.3 EPII之IR圖譜 90
1.4 EPII之Mass圖譜 91
1.5 EPII之Mass圖譜 92
附錄二 93
2.1 染料敏化太陽能電池的製備 93
論文參考文獻:[1] S. Kurtz, K. Emery, National Renewable Energy Laboratory, USA
[2] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitised zinc
oxide: aqueous electrolyte: platinum photocell.” Nature, 1976, 261, 402-403.
[3] B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on
dye-sensitized colloidal TiO2 films.” Nature, 1991, 353, 737-740.
[4] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of light to electricity bycis-X2bis(2,2-bipyridyl-4,4-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br -, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes” J. Am. Chem. Soc. 1993, 115, 6382.
[5] M.K. Nazeeruddin, P. Pchy, M. Grätzel, “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex” Chem. Commun. 1997, 1705.
[6] M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells" J. Photochem. Photobiol, 2004, A 164, 3.
[7] Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, Md. K. Nazeeruddin, Eric W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency” Science, 2011, 334, 629-633
[8] M. Grätzel, “Photoelectrochemical cells” Nature, 2001, 414, 338-344.
[9] M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells” Inorganic Chemistry, 2005, 44, 841.
[10] S. Ferrere, A. Zaban, and B. A. Gregg, “Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives” J. Phys. Chem. B, 1997, 101, 23, 4490–4493
[11] K. Sayama, H. Sugihara, H. Arakawa, “Photo electrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye” Chem. Mater., 1998, 10, 12, 3825–3832
[12] G. Redmond, D. Fitzmaurice, M. Grätzel, “Visible Light Sensitization by cis-Bis(thiocyanato)bis(2,2-bipyridyl-4,4-dicarboxylato)ruthenium(II) of a Transparent Nanocrystalline ZnO Film Prepared by Sol-Gel Techniques” Chem. Mater., 1994, 6, 5, 686–691
[13] M. Y. El Zayat, A. O. Saed and M. S. El-Dessouki, “Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes” Int. J. Hydrogen Energy, 1998, 23, 4, 259-266
[14] N. G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells” J. Phys. Chem. B, 2000, 104, 8989-8994
[15] N. Robertson, “Optimizing dyes for dye-sensitized solar cells” Angew. Chem. Int. Ed, 2006, 45, 2338-2345
[16] Y. Chiba, A. Islam, Y. Watanabe, R. Komyia, N. Koide, L. Han, “Dye Sensitized Solar Cells with Conversion Efficiency of 11.1%” Jpn. J. Appl. Phys. 2006, 25, 638
[17] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte” Nat. Mater. 2003, 2, 402.
[18] M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska,S. Ito, B. Takeru, M. Grätzel, “Combined Experimental and DFT-TDDFT
Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers” J.Am. Chem. Soc. 2005, 127, 16835
[19] A. Mishra, M.K.R. Fischer, P. Bäuerle, “Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules” Angew. Chem. Int. Ed. 2009, 48, 2474 – 2499
[20] C.P Lee, R.Y.Y Lin, L.Y. Lin, C.T. Li, T.C. Chu, S.S. Sun, J. T. Lin, K.C. Ho, “Recent progress in organic sensitizers for dye sensitized solar cells” RSC Adv, 2015, 5, 23810-23825
[21] Koumura, N.; Wang, Z. S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K, “Alkyl-functionalized organic dyes for efficient molecular photovoltaics” J. Am. Chem. Soc. 2006, 128 (44), 14256-14257.
[22] K. Kakiage, Y. Aoyama, T. Yano, T. Otsuka, T. Kyomen, M. Unnoc, M. Hanaya, “An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell” Chem. Commun, 2014, 50, 6379
[23] G. Schlichthorl, N.G. Park, A.J. Frank, “Evaluation of the Charge-Collection Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. 1999, B 103, 782
[24] Li, B.; Wang, L.; Kang, B.; Wang, P.; Qiu, Y., “Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells” 2006, 90 (5), 549-573
[25] G. Oskam, B. V. Bergeron, G. J. Meyer, P. C. Searson, “Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells” J. Phys. Chem. B, 2001, 105, 6867–6873
[26] H. N. Tsao , C. Yi , T. Moehl, J.-H Yum, S. M Zakeeruddin, M. K. Nazeeruddin, M.Grätzel, “Cyclopentadithiophene Bridged Donor–Acceptor Dyes Achieve High Power Conversion Efficiencies in Dye-Sensitized Solar Cells Based on the tris-Cobalt Bipyridine Redox Couple.” Chem Sus Chem 2011, 4 (5), 591-594.
[27] W. Kubo, S. Kambe, S. Nakade. “Photocurrent-Determining Processes in Quasi-Solid-State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes” J. Phys. Chem. B, 2003, 107 (18), 4374–4381
[28] P. Wang, S. M. Zakeeruddin, M. Grätzel, “Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells.” Chem. 2004, 125:1241—1245
[29] Z. P. Huo, S.Y. Dai , K.J. Wang, “Nanocomposite gel electrolyte with large enhanced charge transport properties of an I3−/I− redox couple for quasi-solid-state dye-sensitized solar cells” Solar Energy Materials & Solar Cells 91, 2007, 91 : 1959-1965
[30] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer & M. Grätze, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies” Nature, 1998, 395, 583-585
[31] G. R. A. Kumara , A. Konno , K. Shiratsuchi, “Dye-Sensitized Solid-State Solar Cells: Use of Crystal Growth Inhibitors for Deposition of the Hole Collector.” Chem Mater, 2002, 14:954—955
[32] D. Qin, D. Li, Z. Yu, Y. Lu, Q. Meng,. “Low Cost, Environmentally Friendly, In Situ Prepared Quasi-Solid-State AlI3 Electrolyte for Dye-Sensitized Solar Cells” Electrochem. Solid State Lett, 2010, 13(3), B11-B13
[33] H. Wang, J. Li, F. Gong, G. Zhou, Z.S. Wang, “Ionic Conductor with High Conductivity as Single-Component Electrolyte for Efficient Solid-State Dye-Sensitized Solar Cells” J. Am. Chem. Soc., 2013, 135 (34), pp 12627–12633
[34] Y. Rong, X. Li, G. Liu, H. Wang, Z. Ku, M. Xu, L. Liu, M. Hu, Y. Yang, M. Zhang, T. Liu, H. Han, “Monolithic quasi-solid-state dye-sensitized solar cells based on iodine-free polymer gel electrolyte” Journal of Power Sources 235, 2013, 243-250
[35] B. C. Nathb, B. Gogoia, M. Boruaha, S. Sharmaa, M. Khannama, G. A. Ahmed, S. K. Dolui, “High performance polyvinyl alcohol/multi walled carbon nanotube/polyaniline hydrogel (PVA/MWCNT/PAni) based dye sensitized solar cells” Electrochimica Acta 146, 2014, 106–111
[36] M. S. Akhtar, Z.Y. Li, D.M. Park, D.W. Oh, D.H. Kwak, O.B. Yanga, “A new carbon nanotubes (CNTs)–poly acrylonitrile (PAN) composite electrolyte
for solid state dye sensitized solar cells” Electrochimica Acta 56, 2011, 9973– 9979
[37] M. R. Karim, A. Islam, S.P. Singh, L. Han, “Quasi Solid-State Dye-Sensitized Solar Cell Incorporating Highly Conducting Polythiophene-Coated Carbon Nanotube Composites in Ionic Liquid.” Advances in OptoElectronics, 2011, 357974, 7.
[38] N. Khongchareon, S. Choopun, N. Hongsith, A. Gardchareon, S.Phadungdhitidhada, D. Wongratanaphisan, “Influence of carbon nanotubes in gel electrolyte on photovoltaic performance of ZnO dye-sensitized solar cells” Electrochimica Acta 106, 2013, 195– 200.
[39] Q. Wang, J. E. Moser, and M. Grätzel, “Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells” J. Phys. Chem. B, 2005, 109, 14945-14953
[40] L. Han, N. Koide, Y. Chiba and T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells” Appl. Phys. Lett., 2004, 84, 2433
[41] J. Shi, B. Peng, J. Pei, S. Peng, J. Chen, “An inexpensive and efficient pyridine-based additive for the electrolyte of dye-sensitized solar cells” Journal of Power Sources, 2009, 193, 878-884
論文全文使用權限:不同意授權