現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:新型多功能上肢施力評估系統 [以論文名稱查詢館藏系統]
論文英文名稱:A novel multifunction assessment system for upper limb force exertion [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:管理學院
系所名稱:工業工程與管理研究所
畢業學年度:104
畢業學期:第二學期
出版年度:105
中文姓名:蔡忠樺
英文姓名:Zhong-Hua Cai
研究生學號:103378057
學位類別:碩士
語文別:中文
口試日期:2016/07/12
指導教授中文名:陳協慶
指導教授英文名:Hsieh-Ching Chen
口試委員中文名:陳一郎;梁曉帆
口試委員英文名:Yi-Lang Chen;Xiao-Fan Liang
中文關鍵詞:肌肉骨骼傷害風險評估力量量測
英文關鍵詞:MSDsRisk assessmentForce measurement
論文中文摘要:造成肌肉骨骼危害的主要因素包括姿勢、施力、重複性等因子,當代廣被接受及使用的人因評估工具必然需要考量這些因子對作業人員造成的影響。然而,施力的大小往往無法由肉眼觀察獲得,施力的實際負荷大小也會因工作者的體型、性別、年齡及穿戴手套等因素之影響而不同,因此,有些上肢肌肉骨骼危害風險評估工具採用工作者的主觀感受(例如OCRA、HAL-TLV、KIM-MHO)或利用儀器測量(OCRA、HAL-TLV、EAWS)來決定施力大小的風險。
使用主觀感受來決定工作者的施力負荷固然方便,但缺乏經驗的評估人員往往難以判定主觀感受的合理性。若採用測量的方式來評估施力,目前市售僅有像握力計、指夾力計、拉/壓力計等單一功能的測量設備,對於作業人員複雜繁多的施力行為,尚無一款多功能設計,能依實際作業施力情形彈性調整其測量及記錄功能,以更合理的方式評估施力負荷。
本研究針對人因上肢危害評估工具(OCRA、KIM-MHO、EAWS4等)的施力評估需求,開發一款多功能的力量測量裝置。該裝置搭配不同配件可進行推、拉、握、指夾力等量測,透過內建的藍牙介面,可用行動裝置或個人電腦於作業現場進行施力資料之蒐集,事後再使用開發之軟體進行分析,分析所得之相關參數可作為使用人因上肢危害評估工具之參考。
論文英文摘要:Musculoskeletal hazards are mainly caused by risk factors of awkward posture, forceful exertion, high repetitive movement, etc... Widely accepted ergonomics assessment tools consider the impact of these factors on workers’ health. However, workers’ exertion force cant be visualized, and is usually affected by factors such as body size, gender, age, glove use and many other factors. Therefore, some risk assessment tools for upper extremity musculoskeletal hazard recommend adopting workers subjective feelings (e.g. OCRA, HAL-TLV, KIM-MHO) or conducting measurement (OCRA, HAL-TLV, EAWS) to determine the force level.
Using subjective evaluation, like Borgs RPE, to determine workers exertion level certainly has its convenience. However, inexperienced investigators often feel difficult to judge the reasonableness of subjective feelings. Furthermore, most commercially available force measurement devices such as grip / pinch gauges or pull / push force devices are with only single or limited functions. We do not notice any universal device with portability that can be adjusted and tailored to measure various force exertions in actual work situation.
The research develops a multi-function system for assessing working force to accommodate the use of upper extremity hazard assessment tools (e.g. OCRA, HAL-TLV, KIM-MHO, EAWS). Combined with various accessories, the system can measure pushing, pulling, gripping, and pinch force data on job sites by mobile devices or a personal computer with Bluetooth. Collected data are analyzed afterward by using analysis software developed in this research.
論文目次:摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究架構 3
第二章 文獻探討 5
2.1 肌肉骨骼危害 5
2.1.1重複性上肢肌肉骨骼疾病 5
2.1.2肌肉骨骼疾病的流行病學數據與衝擊 5
2.1.3肌肉骨骼傷害研究方法 6
2.2 上肢危害評估工具 7
2.2.1 OCRA Index 7
2.2.2 HAL-TLV 9
2.2.3 KIM-MHO 12
2.2.4 EAWS 15
2.3手工具設計 17
第三章 研究方法 18
3.1研究流程 18
3.2施力類型及計測數據收集 19
3.2.1推力(Push)與拉力(Pull) 20
3.2.2握力(Grip) 23
3.2.3指夾力(Pinch) 23
3.3市售可攜式施力裝置資料收集 25
3.3.1握力計 26
3.3.2拉力/壓力計 26
3.3.3指夾力計 27
3.4力量測量需求分析 28
3.5施力量測裝置設計規劃 30
3.5.1本體結構設計與荷重元件選擇 30
3.5.2可置換配件及連接器設計 30
3.5.3荷重元訊號放大與傳輸模組設計 30
3.5.4資料收集紀錄軟體之撰寫 31
3.6開發分析軟體 31
第四章 結果 32
4.1本體結構設計與荷重元選擇 32
4.2置換配件及連接器設計 37
4.2.1推/拉與指/掌壓力計 38
4.2.2握力計 39
4.2.3指夾力與握柄施力計 40
4.3荷重元訊號放大與傳輸模組設計 41
4.4開發資料收集記錄軟體 45
4.5開發資料分析軟體 46
第五章 討論 48
5.1裝置本體 48
5.2連接器及配件 49
5.3軟體 51
5.4應用範例 52
5.5未來應用 54
第六章 結論 56
參考文獻 57
論文參考文獻:[1] Thiehoff, R., “Economic significance of work disability caused by musculoskeletal disorders,” Der Orthopade, vol. 31, no. 10, 2002, pp. 949-956.
[2] Picavet, H. J. and Schouten, J. S., “Musculoskeletal pain in the Netherlands: Prevalences, consequences and risk groups, the DMC-study,” Pain, vol. 102, no. 1, 2003, pp. 167-178.
[3] Guo, H. R., Chang, Y. C., Yeh, W. Y., Chen, C. W. and Guo, Y. L., “Prevalence of musculoskeletal disorder among workers in Taiwan: A nationwide study,” Journal of occupational health, vol. 46, no. 1, 2004, pp. 26-36.
[4] Musculoskeletal disorders in Europe-Definitions and statistics, Ref. Eurogip-25/E, 2007.
[5] Working conditions: A quarter of EU citizens suffer from musculoskeletal disorders, European Social Policy. March 5, 2008.
[6] Nonfatal Occupational Injuries And Illnesses Requiring Days Away From Work, U.S. Bureau of Labor Statistics, 2002~2006.
[7] Suka, M. and Yoshida, K., “Musculoskeletal pain in Japan: Prevalence and interference with daily activities,” Modern Rheumatology, vol. 15, no. 1, 2005, pp. 41-47.
[8] 日本中央勞動災害防止協會,機械安全,http://www.jisha.or.jp/,造訪日期:2016年1月。
[9] Health and safety statistics highlights, Health and Safety Executive, April, 2003.
[10] Health and safety statistics, Health and Safety Executive, July, 2006.
[11] 英國安全衛生委員會,肌肉骨骼傷害之工作天損失,http://www.hse.gov.uk/msd/hsemsd.htm/,造訪日期:2016年1月。
[12] Kroemer, K. H. E., “Cumulative trauma disorders: Their recognition and ergonomics measures to avoid them,” Applied Ergonomics, vol. 20, no. 4, 1989, pp. 274-280.
[13] Chatterjeee, D. S., “Repetition strain injury – a recent review”, The Lancet, vol. 349, 1987, pp. 100-105.
[14] Hughes, P. and Ferrett, E., Introduction to Health and Safety at Work. The Handbook for the NEBOSH National General Certificate,Oxford, 2003.
[15] Keyserling, W. M., Stetson, D. S., Silverstein, B. A. and Brouwer, M. L., “A checklist for evaluating ergonomic risk factors associated with upper extremity cumulative trauma disorders,” Ergonomics, vol. 36, no. 7, 1993, pp. 807-831.
[16] Thiehoff, R., “Economic significance of work disability caused by musculoskeletal disorders”, Orthopade, vol. 31, no. 10, 2002, pp. 949-956.
[17] Picavet, H. S. J. and Schouten, J. S., “Musculoskeletal pain in the Netherlands: prevalences, consequences and risk groups, the DMC3-study. ” Pain, vol. 102, no. 1-2, 2003, pp. 167-178.
[18] Guo, H. R., Chang, Y..C., Yeh, W. Y., Chen, C. W. and Guo, Y. L., “Prevalence of musculoskeletal disorder among workers in Taiwan: A nationwide study,” J Occup Health, vol. 46, 2004, pp. 26-36.
[19] Bernard, B. P., Putz, A. V. and Burt, S. E., A critical review of epidemiologic evidence for work-related musculoskeltal disorders of the neck, upper-extremity, and low-back, 1997.
[20] Bureau of Labor Statistics occupational safety and health definitions.Available from: http://www.bls.gov/iif/oshdef.htm,造訪日期:2016年1月。
[21] 謝曼麗,「工作有關的肌肉骨骼傷病」,勞工安全衛生簡訊,2005,第74-19頁。
[22] Heinrich, J. and Blatter, B. M., “RSI symptoms in the Dutch labour force,” Trends, risk factors and explanations. TSG, vol. 83, 2005, pp. 16-24
[23] Roquelaure, Y., Ha, C., Leclerc, A., Touranchet, A., Sauteron, M. and Melchior, M., “Epidemiologic surveillance of upper-extremity musculoskeletal disorders in the working population,” Arthritis Rheum, vol. 55, no. 5, 2006, pp. 765-785.
[24] Rahman, Z. A. and Atiya, S. A., “Prevalence of Work-Related Upper Limbs Symptoms (WRULS) Among Office Workers,” Asia Pac J Public Health, vol. 21, no. 3, 2009, pp. 252-258.
[25] Fernandes, R. C. P., Carvalho, F. M. and Assunção, A. Á., “Prevalence of musculoskeletal disorders among plastics industry workers, ” Cad Saúde Pública, vol. 27, 2011, pp. 78-86.
[26] Dunning, K. K., Davis, K. G., Cook, C., Kotowski, S. E., Hamrick, C. and Jewell, G., Costs by Industry and Diagnosis Among Musculoskeletal Claims in a State Workers Compensation System: 1999–2004. Am J Ind Med 2010;53:276-284
[27] 許昺奇、郭育良、游志雲,「肌肉骨骼傷病高風險作業成因分析與現場改善」,勞工安全衛生研討會,2012。
[28] Genaidy, A. and Asfour, S., “Review and evaluation of physiological cost prediction models for manual materials handling,” Human Factors, vol. 29, no. 4, 1987, pp. 465-476.
[29] Astrand, P. O., “Quantification of exercise capability and evaluation of physical capacity in man,” Cardiovasc Dis, vol. 19, 1976, pp. 19-51.
[30] Grandjean, E., Fitting the task to the man: A text book of occupational ergonomics, 4th ed, New York: Taylor & Francis, 1980.
[31] Barnes, R. M., Motion and time study design and measurement of work, New York: John Wiley & Sons, 1988.
[32] Kroemer, K., Snook, S., Meadows, S. and Seutsh, S., “Ergonomic models of anthropometry, human biomechanics, and operator-equipment interface,” Proceedings of a workshop, Washington, DC: National Academy Press, 1988.
[33] Chaffin, D., “Biomechnical strength models in industry,” Conference of Govermental Hygienists, Ergonomic interventions to prevent musculoskeletal injuries in industry, American, Chelsea, MI: Lewis Publishers, 1987.
[34] Chaffin, D. and Anderson, G., Occupational Biomechanics, New York: Wiley, 1991.
[35] LeVeau, B., Sanders, W.B., Biomechanics of human motion, Philadelphia, 1977.
[36] Mital, A., “The psychological approach in manual lifting: A verification study,” Human Factors, vol. 25, 1983, pp. 485-491.
[37] Ayoub, M. and Mital, A, Manual materials handling, London: Taylor & Francis, 1989.
[38] Genaidy, A., Asfour, S., Mital, A. and Waly, S., “Psychological models for manual lifting tasks,” Aren; t Ergonomics, vol. 21, no. 4, 1990, pp. 295-303.
[39] Checkoway, H., Pearce, N. E. and Crawford, B. D. J., Research methods in occupational epidemiology, New York: Oxford Univerdity Press, 1989.
[40] Abdel, M. E., Khalil, T. M. and Diaz, E., Ergonomic job analysis for paients with chronic low back pain during rehabilitation. In Designing for Everyone. Edited by Y. Queinnec and F. Daniellou. London: Taylor & Francis, pp. 1638-1640.
[41] Abdel, M. E., Diaz, E. and Khalil, T. M., Ergonomic job analysis for patients with Cervical Trauma during rehabilitation. In Advances in Industrial Ergonomics and Safety; Edited by S. Kumar. London: Taylor & Francis, 1992, pp. 1195-1200.
[42] Sanders, M. S. and McCromick, E. J., Human factors in engineering and design, McGraw-Hill, 1993.
[43] Colombini, D., Occhipinti, E. and Grieco, A., Risk assessment and management of repetitive movements and exertions of upper limbs, Kidlington: Elsevier Science, 2002, pp. 43-110.
[44] E. Occhipinti, “OCRA: A concise index for the assessment of exposure to repetitive movements of the upper limbs,” Ergonomics, vol. 41, no. 9, 1998, pp. 1290-1311.
[45] Colombini, D., “An observational method for classifying exposure to repetitive movements of the upper limbs,” Ergonomics, vol. 41, no. 9, 1998, pp. 1261-1289.
[46] Apostoli, P., Sala, E., Gullino, A. and Romano, C., “Comparative analysis of the use of 4 methods in the evaluation of the biomechanical risk to the upper limb,” Giornale Italiano Medicina Lavoro Ergonomia, vol. 26, no. 3, 2004, pp. 223-241.
[47] Jones, T. and Kumar, S., “Comparison of ergonomic risk assessments in a repetitive high-risk sawmill occupation: Saw-filer,” International Journal of Industrial Ergonomics, vol. 37, no. 9-10, 2007, pp. 744-753.
[48] Occhipinti, E. and Colombini, D., “The OCRA method: Updating of reference values and prediction models of occurrence of work-related musculo-skeletal diseases of the upper limbs (UL-WMSDs) in working populations exposed to repetitive movements and exertions of the upper limbs,” Medician Lavoro, vol. 95, no. 4, 2004, pp. 305-319.
[49] Occhipinti, E. and Colombini, D., “Updating reference values and predictive models of the OCRA method in the risk assessment of work-related musculoskeletal disorders of the upper limbs,” Ergonomics, vol. 50, no. 11, 2007, pp. 1727-1739.
[50] ACGIH, Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices, Cincinnati, 2006, pp. 118-223.
[51] Schaub, K., Ergonomics risk assessments in automotive and electrical industry based on the dual European concept of health and safety at work. In: NES abstracts, ergonomics is a lifestyle, annual conference of the Nordic ergonomics society, Reykjavı´k, Iceland, vol. 40, no. 11–13, August 2008, pp. 230.
[52] K. Schaub and K. Ghezel-Ahmadi, Vom AAWS zum EAWS – Ein erweitertes Screening-Verfahren für körperliche Belastungen, in: Kompetenzentwicklung in realen und virtuellen Arbeitssystemen, 53. Kongress der GfA, pp. 601- 604, Dortmund, GfA-Press
[53] Colombini, D., Occipinti, E., and Grieco, A., Risk assessment and management of repetitive movements and exertions of upper limbs, Elsevier Ergonomics Book Series – Volume 2. Amsterdam: Elsevier. 2002.
[54] Klußmann, A., Evaluation of objectivity, reliability and criterion validity of the Key Indicator Method for Manual Handling Operations (KIM-MHO), draft 2007. In: The 18th World congress on ergonomics, pp. 12–16 February, Recife, Brazil, Work 41, Supplement 1/2012 3997–4003. IOS Press. DOI: 10.3233/WOR-2012- 0699-3997.
[55] Lavatelli, I., Schaub, K. and Caragnano, G., “Correlations in between EAWS and OCRA Index concerning the repetitive loads of the upper limbs in automobile manufacturing industries,” Work, vol. 41, supply. 1, 2012, pp. 36-44.
[56] Kuijt, E. L. F. M., Groenesteijn, L., Loozea, M. P. and Vink, P., Identifying factors of comfort in using hand tools. TNO Work and Employment, P.O. Box 718, Hoofddorp 2130 AS, The Netherlands.
[57] Kuijt, E. L. F. M., Vinka, P. and Loozea, M. P., Comfort predictors for different kinds of hand tools:Differences and similarities. TNO Work and Employment, Hoofddorp, the Netherlands
[58] MSFC-STD-512A, Stokes, J. W., System Requirements for Weightless Environments Airesearch Mfg. Co., NASA-MSFC, 11/25/76.
[59] Voorbij, A. I. M. and Steenbekkers, L. P. A., “The composition of a graph on the decline of total body strength with age based on pushing, pulling, twisting and gripping force,” Applied Ergonomics, vol. 32, 2000, pp. 287-292.
[60] Ergonomic design for people at work. vol. 2, by Health and Environmental Laboratories, Eastman Kodak Company The Ergonomics Group, 1989.
[61] Chaffin, D. B., “Ergonomics Guide for the assessment of human strength,” American Industrial Hygiene Association Journal, vol. 36, 1975, pp. 505-510.
[62] Ayoub, M. M., Mital, A., Bakken, G. M., Asfour, S. S. and Bethea, M. J., “Development of strength and capacity norms for manual material handling activities,” The state of the art. Human Factors, vol. 22, no. 3, 1980, pp. 271-283.
[63] Kamon, E. and Goldfuss, A., “In-plant evaluation of the muscle strength of workers,” American Industrial Hygiene Association Journal, vol. 39, 1978, 801–807.
[64] Schmidt, R. T. and Toews, J. V., “Grip strength as measured by the Jamar dynamometer,” Archives of Physical Medicine & Rehabilitation, 1970, pp. 321-327.
[65] An, K. N., Cooney, W. P., Chao, E. Y. and Linscheid, R. L., “Functional strength measurement of normal fingers,” ASME Advanced in Bioengineering Orthopaedic Biomechanics Laboratory, Mayo Clinic, 1978.
[66] Swanson, A. B., Matev, I. B. and Groot, G., The strength of the hand, NY University Medical School Interclinical Information Bulletin, vol. 13, no. 1, 1974, pp. l-8.
[67] Astin, A. D., Finger force capability: measurement and prediction using anthropometric and myoelectric measures, 1999.
[68] Mathiowetz, V., Kashman, N., Volland, G., Weber, K., Dowe, M. and Rogers, S., “Grip and pinch strength: normative data for adults,” Archives of Physical Medicine and Rehabilitation, vol. 66, 1985, pp. 69-74.
[69] Imrhan, S. N., “Trends in finger pinch strength in children, adults, and the elderly,” Human Factors, vol. 31, no. 6, 1989, pp. 689-701.
[70] Fellows, G. L. and Freivalds, A., “Ergonomics evaluation of a foam rubber grip for tool handles, ” Appl. Ergon, vol. 22, no. 4, 1991, pp. 225-230.
[71] Mahmut, E., “Relative optimum grip span as a function of hand anthropometry,” Industrial Ergonomics, vol. 34, 2004, pp. 1-12.
[72] Walther, M. W. H. and Lex, B. V., “The Martin Vigorimeter Represents a Reliable and More Practical Tool Than the Jamar Dynamometer to Assess Handgrip Strength in the Geriatric Patient,” JAMDA, vol. 17, no. 5, 2016, pp. 466-471.
[73] Cruz, J. A. J., Baeyens, J. P. and Bauer, J. M., “Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People,” Age Ageing, vol. 39, 2010, pp. 412-423.
論文全文使用權限:不同意授權