現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:使用資料探勘方法探討公共自行車系統之服務品質 [以論文名稱查詢館藏系統]
論文英文名稱:Exploring the Service Quality of Public Bike-Sharing System Using Data Mining Methods [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:管理學院
系所名稱:工業工程與管理系碩士班
畢業學年度:104
畢業學期:第二學期
出版年度:105
中文姓名:吳昌益
英文姓名:Chang Yi-Wu
研究生學號:103378041
學位類別:碩士
語文別:中文
口試日期:2016/06/08
指導教授中文名:劉建浩
口試委員中文名:車振華;許超澤
中文關鍵詞:公共自行車、資料探勘、隨機森林、支配性約略集合
英文關鍵詞:Bike-Sharing; Data mining; Random Forest; Dominance-based Rough Set Approach
論文中文摘要:當全球城市都在對抗污染、減碳策略變成市政重心、都市的交通壅塞問題及市民健康等,市政預算因各式各樣的服務需求成長而顯得緊繃,自行車逐漸成為各市政府最歡迎的多端解圍方式。從單車文化之所以普及的背後邏輯看來,可以想見單車將在本世紀內改造城市的面貌,以及城市給人的感覺。過去的研究顯示,良好的公共運輸服務品質,可以吸引更多的旅客使用大眾運輸工具。隨著公共自行車系統大量出現在全球各地的城市中,出現許多研究探討此議題,然而過去的研究多著重於實施評估、站點選擇及對於其他運具之影響。本研究則專注於公共自行車系統服務品質探討。本研究首先藉由文獻和專家訪談,歸納出影響台北YouBike系統的4個構面與14個準則,並對使用者進行滿意度的調查,接著利用資料探勘技術中的隨機森林(Random Forest, RF)挑選出關鍵的因素,再使用支配性約略集合(Dominance-based Rough Set Approach, DRSA)進行資料分析、驗證及測試,由所獲得之「如果…,則…」決策規則,幫助決策者瞭解影響的關鍵因素,提高公共自行車系統的使用率及需改善的地方,並提出建議。
論文英文摘要:Cities around the world have put efforts on pollution, carbon reduction, traffic congestion and public health issues. These wide ranges of the growing public services lead to municipal tight budgets. Therefore, public bike sharing system gradually becomes the most popular municipal solution. From the green city point of view, this bike-sharing system may give cities a new life. Prior studies have shown that good public transport service quality can attract more passengers to use public transportation. With the popularity of public bike-sharing systems around the world, many relevant studies have shown nowadays. However, most previous studies focused on the implementation of the system, site selection and impacts on the other vehicle. This study aims to discuss how to improve the service quality public bike-sharing system. First, this study built up a system with four dimensions and 14 criteria on Taipei You Bike system by the literature review and interviews with experts. Using the data mining techniques “Random Forest (RF)”, we derived some key factors relative to service quality. Then, the Dominance-based Rough Set Approach (DRSA) was used to analyze the surveyed data. A set of "if ..., then ..." decision rules can help decision-makers understand the key factors that users perceived. We further used the flow graphs to visualize these rules and helps decision-makers understand more easily. Finally, based on the analyzed results, we provided some suggestions for improving the service levels of public bike-sharing system.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究方法 4
1.4 研究流程 5
第二章 文獻探討 7
2.1 公共自行車系統的定義及概況 7
2.2 國外公共自行車系統發展與現況 7
2.2.1 歷史 7
2.2.2 國外發展與現況 8
2.3 國內公共自行車系統發展與現況 10
2.3.1 高雄市 10
2.3.2 臺北市 11
2.4 公共自行車系統研究及服務品質相關文獻 14
2.4.1 公共自行車系統研究相關文獻 14
2.4.2 服務品質相關文獻 17
第三章 研究方法 22
3.1 資料探勘 24
3.1.1 資料探勘介紹 24
3.1.2 相關應用 26
3.2 隨機森林 28
3.2.1 隨機森林方法介紹 28
3.2.2 隨機森林相關應用 32
3.3 支配性約略集合理論 34
3.3.1 支配性約略集合理論方法介紹 34
3.3.2 配性約略集合理論相關應用 41
第四章 實證分析 44
4.1 樣本資料 44
4.2 隨機森林分析 48
4.3 支配性約略集合 51
4.3.1 近似品質 51
4.3.2 決策規則產生 52
4.3.3 規則驗證 54
第五章 討論與分析 56
5.1 樣本資料分析 56
5.2 隨機森林探討準則重要度 57
5.3 支配性約略集合規則解釋 58
5.4 方法比較 61
第六章 結論與建議 63
6.1 結論 63
6.2 建議 65
參考文獻 67
附錄 74
論文參考文獻:中文部分:
王盼、陳保宏、張瀚文、張巍、孫銀鳳和季妤 (2014),「基於隨機森林模型的需水預測模型及其應用」,水資源保護,第三十卷,第一期,第34-37頁。
白詩滎 (2013),「臺北公共自行車使用行為特性分析與友善環境建構之研究」,碩士論文,國立政治大學地政學系研究所,臺北。
沈哲緯、蕭震洋、辜炳寰、曹鼎志、鄭錦桐和羅文俊 (2011),「運用隨機森林演算法進行莫拉克颱風災區土石流發生因子關聯性分析」,財團法人中興工程顧問社防災科技研究中心,行政院農委會水土保持局土石流防災中心。
余書玫 (2009),「公共自行車租借系統選擇行為之研究」,碩士論文,國立交通大學交通運輸研究所,新竹。
吳俊鋒 (2008),「高速鐵路服務品質、顧客滿意度及再搭乘意願關係之研究」,碩士論文,長榮大學高階管理碩士在職專班,台南。
吳安琪 (2000),「利用資料探勘的技術及統計的方法增強圖書館的經營與服務」,碩士論文,國立交通大學資訊科學研究所,新竹。
李建億和蔡芳遠 (2004),「應用資料探勘術於網路專題學習活動之分析」,南師學報,第三十八卷,第一期,第1-23頁。
邱凱華和黃雍婷 (2009),「運用約略集合理論建構特殊軍品管理知識庫」,中華大學科學與技術學報,第四十一卷,第一期,第171-186頁。
林郁珊和張治安 (2014),「應用空載全波形光達資料於波形分析與地物分類」,航測及遙測學刊,第十九卷,第二期,第75-91頁。
周寶曜、劉偉和范承工譯 (2014),「巨量資料的下一部Big Data新戰略技術及大型網站應用實錄」,臺北:上奇時代,第1-2~1-4頁。
桌達瑋 (2011),「隨機森林分類法於基因組顯著性檢定上之應用」,碩士論文,國立政治大學統計學系,臺北。
陳一郎、卓筱婷、周盈琦、趙昫、林芸平和歐寅生 (2014),「台北市微笑單車YouBike 之服務品質與消費行為分析」,明志學報,第四十三卷,第二期,第71-83頁。
陳貞君 (2014),「高雄好行!C-bike 滿意度之研究」,國立鳳山商工,高雄。
黃仁皇 (2010),「公共自行車騎乘特性、服務便利性、騎乘滿意度之相關研究-以台北市微笑單車為例」,碩士論文,朝陽科技大學休閒事業管理系碩士班,台中。
曾國禎 (2006),「台灣鐵路管理局服務品質對顧客滿意度與再搭乘意願關係之研究-以都會區車站為例」,碩士論文,長榮大學經營管理研究所,台南。
葉忠興 (2012),「企業財務危機診斷模式之建構」,人文暨社會科學期刊,第八卷,第一期,第13-21頁。
解鴻年和張馨文 (2011),「新竹科學城民眾使用公共自行車意願分析」,建築與規劃學報,第十二卷,第三期,第237-254頁。
趙李英 (2013),「隨機森林運用於白血病基因分類」,第九屆知識社群國際研討會。
歐宗殷 (2010),「資料探勘為基礎之零售業銷售預測模式以連鎖超商鮮食商品為例」,博士論文,國立清華大學工業工程與工程管理研究所,新竹。
賴淑芳 (2012),「公共自行車接受度與滿意度研究-以臺北微笑單車為例」,運輸學刊,第二十四卷,第三期,第379-406頁。
簡禎富和許嘉裕譯 (2014),「資料挖礦與大數據分析」,新北:前程文化,第8-15頁。


英文部分:
Ana, S., Pinto, I., Ribeiro, D. and Delgado, J. (2014), “Multicriteria analysis for evaluation of bike lane routes integrates to public transportation”, Procedia - Social and Behavioral Sciences, 162(55), pp.388-397.
Abastante, F., Asunisl, S., Bottero, M., Greco, S. and Lami, I. M. (2010), “The Dominance-based Rough Set Approach for Sustainability Assessment: The Evaluation of Alternative Transport Links between Two Italian Cities”, Wheeler, S. M. and Beatly, T., The Sustainable Urban Development Reader, New York: Routledge, 2014, pp.345-360.
Beswick A. (2008), “International Conference on Green Transport Development-Green Transport Summit”, Taipei:Taipei International Convention Center, pp.26-40.
Bernardi, S. and Rupi, F. (2015), “An analysis of bicycle travel speed and disturbances on off-street and on-street facilities”, Transportation Research Procedia, 5(1), pp.82-94.
Bhattacharyya, S., Jha, S., Tharakunnel, K. and Westland, J. C. (2011), “Data mining for credit card fraud: A comparative study”, Decision Support Systems, 50(3), pp.602-613.
Breiman, L. (2001), “Random forests”, Machine learning, 45, pp.5-32.
Chiou, H. K. and Huang, Y. T. (2009), “Applying Rough Set Theory to Constructing Knowledge Base for Critical Military Commodity Management”, Journal of China University of Science and Technology, 41, pp.171-186.
Bubalo, B. and Gaggero, A. A. (2015), “Low-cost carrier competition and airline service quality in Europe”, Transport Policy, 43, pp.23-31.
Chen, L. F. and Tsai, C. T. (2015), “Data mining framework based on rough set theory to improve location selection decisions: A case study of a restaurant chain”, Tourism Management, 53, pp.197-206.
Díaz-Uriarte, R. and Andrés, S. A. (2006), “Gene selection and classification of microarray data using random forest”, BMC Bioinformatics, 7(3). pp1-13.
DeMaio, P. and Gifford, J. (2004), “Will Smart Bikes Succeed as Public Transportation in the United States?”, Journal of Public Transportation, 7(2). pp.1-15.
Fisnman, E., Washington, S. and Haworth, N. (2014), “Bike share’s impact on car use: Evidence from the United States,Great Britain, and Australia”, Transportation Research, Part D, 31(6), pp.13-20.
Fisnman, E., Washington, S. and Haworth, N. (2012), “Barriers and facilitators to public bicycle scheme use: A qualitative approach”, Transportation Research, Part F, 15(6), pp.686-698.
Fisnman, E., Washington, S. and Haworth, N. (2015), “Bikeshare’s impact on active travel: Evidence from the United States, Great Britain, and Australia”, Journal of Transport & Health, 2(2), pp.135-142.
Greco, S., Matarazzo, B. and Slowinski, R. (1998), “A new rough set approach to evaluation of bankruptcy risk”, Operational Tools in the Management of Financial Risks, pp.121-136.
Gardner, G. (2013), “European cities promote cycling planning experience”, Taiwan Watch, 15(2), pp.39-49.
Gauthier, A., Hughes, C., Kost, C., Li, S., Linke, C., Lotshaw, S., Mason, J., Pardo, C., Rasore, C., Schroeder, B. and Trevino, X. (2013), “The Bike-share Planning Guide”, New York: Institute for Transportation & Development Policy, pp.8-27.
Gaia do, A. B. (2015), “Using a Dominance-based Rough Set Approach for Analysing Business Indicators”, Procedia Computer Science, 55, pp.350-359.
Huang, J. H., Xie, H, L., Yan. J., Lu, H. M., Xu, Q. S. and Liang, Y. Z. (2013), “Using random forest to classify T-cell epitopes based onamino acid properties and molecular features”, Analytica Chimica Acta, 804, pp.70-75.
Liou, J. H. (2011), “Variable Consistency Dominance-based Rough Set Approach to formulate airline service strategies”, Applied Soft Computing, 11(5), pp.4011-4020.
Liao, S. H., Chen, Y. J. and Hsieh, H. H. (2011), “Mining customer knowledge for direct selling and marketing”, Expert Systems with Applications, 38(5), pp.6059-6069.
Liou, J. H., and Tzeng, G. H. (2010), “A Dominance-based Rough Set Approach to customer behavior in the airline market”, Information Sciences, 180(11), pp.2230-2238.
Jäppinen, S., Toivonen, T. and Salonen, M. (2013), “Modelling the potential effect of shared bicycles on public transport travel times in Greater Helsinki: An open data approach”, Applied Geography, 43(8), pp.13-24.
Jomnonkwao, S. and Ratanavaraha, V. (2016), “Measurement modelling of the perceived service quality of a sightseeing bus service: An application of hierarchical confirmatory factor analysis”, Transport Policy, 45(1), pp.240-252.
Köksal, G., Batmaz, I. and Testik, M. C. (2011), “A review of data mining applications for quality improvement in manufacturing industry”, Expert Systems with Applications, 38(10), pp.13448-13467.
Kratzenberg, M., Zürn, H. H., Revheim, P. P. and Beyer, H. G. (2015), “Identification and handling of critical irradiance forecast errors using a random forest scheme – a case study for southern Brazil”, Energy Procedia, 76(12), pp.207-215.
Majumdar, B. B. and Mitra, S. (2015), “Identification of factors influencing bicycling in small sized cities: A case study of Kharagpur, India”, Case Studies on Transport Policy, 3(3), pp.331-346.
Noor, H. M., Nasrudin, N. and Foo, J. (2014), “eterminants of Customer Satisfaction of Service Quality: ity bus service in Kota Kinabalu, Malaysia”, Procedia - Social and Behavioral Sciences, 153(16), pp.595-605.
Nassiri, H. and Rezaei, A. (2012), “Air itinerary choice in a low-frequency market: A decision rule approach”, Journal of Air Transport Management, 18(1), pp.34-37.
Ona, R. d., Eboli, L. and Mazzulla, G. (2014), “Monitoring changes in transit service quality over time”, Procedia - Social and Behavioral Sciences, 111, pp. 974 - 983.
Olio, L., Ibeas, A. and Cecin, P. (2011), “The quality of service desired by public transport users”, Transport Policy, 18(1), pp. 217-227.
Pucher, J. and Buehler, R. (2006), “Why Canadians cycle more than Americans: A comparative analysis of bicycling trends and policies”, Transport Policy, 13, pp. 265-279.
Pulugurtha, S. S. and Thakur, V. (2015), “Evaluating the effectiveness of on-street bicycle lane and assessing risk to bicyclists in Charlotte, North Carolina”, Accident Analysis and Prevention, 76(3), pp.34-41.
Parasuraman, A., Zeithaml, V. A. and Berry, L. L. (1985), “A Conceptual Model of Service Quality and Its Implications for Future Research”, Journal of Marketing, 49(4), pp.41-50.
Parasuraman, A., Zeithaml, V. A. and Berry, L. L. (1988), “SERVQUAL- A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality”, Journal of Retailing, 64(1), pp.12-37.
Peters, G. and Poon, S. (2011), “Analyzing IT business values – A Dominance based Rough Sets Approach perspective”, Expert Systems with Applications, 38(9), pp.11120-11128.
Shaheen, S. A., Guzman, S. and Zhang, H. (2010), “Bikesharing in Europe, the Americas, and Asia”, Journal of the Transportation Research Board, 2143, pp.159-167.
Sawicki, P. and Żak, J. (2014), “The application of dominance-based rough sets theory to evaluation of transportation systems”, Procedia - Social and Behavioral Sciences, 111, pp.1142-1154.
Shen, K. Y. and Tzeng, G. H. (2015), “A new approach and insightful financial diagnoses for the IT industry based on a hybrid MADM model”, Knowledge-Based Systems, 85(13), pp.112-130.
Tilahun, N. Y., Levinson, D. M. and Krizek, K. J. (2007), “Trails, lanes, or traffic: Valuing bicycle facilities with an adaptive stated preference survey”, Transportation Research, Part A, 41(4), pp.287-301.
Ting, S. L., Tse, T. K., Ho, G. T. S., Chung, S. H. and Pang, G. (2014), “Mining logistics data to assure the quality in a sustainable food supply chain: A case in the red wine industry”, Int. J. Production Economics, 152(8), pp.200-209.
Yang, G. M., Feng, X. and Yang, K. (2015), “Hydraulic metal structure health diagnosis based on data mining technology”, Water Science and Engineering, 8(2), pp.158-163.
Yeh, C. C., Lin, F. and Hsu, C. Y. (2012), “A hybrid KMV model, random forests and rough set theory approach for credit rating”, Knowledge-Based Systems, 33(9), pp.166-172.
Yang, R. M., Zhang, G. L., Liu, F., Lu, Y. Y., Yang, F., Yang, F., Yang, M., Zhao, Y. G. and Li, D. C. (2016), “Comparison of boosted regression tree and random forest models formapping topsoil organic carbon concentration in an alpine ecosystem”, Ecological Indicators, 60(1), pp.870-878.
Zhai, L.Y., Khoo, L. P. and Zhong, Z. W. (2009), “A dominance-based rough set approach to Kansei Engineering in product development”, Expert Systems with Applications, 36(1), pp.393-402.

網站:
丹麥哥本哈根GoBike官方網站 (2015/9),http://gobike.dk/solution/the-bike/.
法國里昂Vélo'V官方網站 (2015/9),http://goo.gl/6GQT94.
高雄市公共腳踏車資訊網 (2015/9),http://www.c-bike.com.tw/about.aspx.
台北市YouBike官方網站 (2015/9),https://taipei.youbike.com.tw/cht/index.php.
交通安全入口網 (2015/9),http://168.motc.gov.tw/TC/index.aspx.
論文全文使用權限:不同意授權