現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:利用關聯法則分析個股報酬率的關係 [以論文名稱查詢館藏系統]
論文英文名稱:Using Association Rule Mining to Study the Return Relationships Among Stocks [以論文名稱查詢館藏系統]
英文關鍵詞:Association RulesAprioriRule Interestingness
論文中文摘要:  長久以來人們使用各種工具與方法預測股票價格的變化,選擇合適的分析方法,就是投資能夠獲利的重要關鍵。如何從證券市場中龐大的股票數據資訊找出有用的訊息提供投資者做投資參考,已是近年來重要的研究方向。

論文英文摘要:A variety of tools and methods were used to predict the changes in stock prices. Choosing an appropriate method of analysis is the key to getting profit. In recent years, finding the correlation of stock markets to provide significant rules for the financial market is an important direction of research.

However, there are many ways of predicting stock market. Most of them were studying the price relationships among stocks. The study is using association rule mining to study the return relationships among stocks by using R software. And the study add Rule Interestingness to find valuable rules. To provide more specific information, the rules compared with the actual stock data and be verified at the same time. The Source1 in this study included 118 trading days and generated 223 rules; the Source2 in this study included 991 trading days and generated only 12 rules. The results show that the rules in different data sources diverge greatly. The returns between companies have relationships to some extent.
論文目次:摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii

第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究架構 2

第二章 文獻探討 3
2.1 資料探勘 3
2.1.1 資料探勘的定義 3
2.1.2 資料探勘的模式 4
2.1.3 資料探勘的方法 5
2.2 關聯法則 6
2.2.1 關聯法則定義 6
2.2.2 Apriori演算法 9
2.2.3 資料前序處理 13
2.2.4 規則有趣性 13

第三章 研究方法 19
3.1 研究架構 19
3.1.1 研究方法與流程 20
3.2 股票報酬率 21
3.3 資料處理 22
3.3.1 資料庫建置 22
3.3.2 資料的選擇 23
3.3.3 資料的分割 23

第四章 實驗結果與分析 25
4.1 交易區間的探勘結果與分析 25
4.1.1 實驗一 S1探勘結果 25
4.1.2 實驗二 S2探勘結果 29
4.1.3 實驗三 S3探勘結果 33
4.2關聯規則探勘總結分析 38

第五章 結論 39

參考文獻 41
論文參考文獻:[1] Prof. Matthias Schumann, Dip1.-Kfm. Thomas Lohrbach, “Comparing Artificial Neural Networks with Statistical Methods within the Field of Stock Market Prediction, ” Proceeding of the Twenty-Sixth Hawaii International Conference on System Sciences, Volume:iv, 1993, pp.597-606
[2] K. J. Kim, I. Han, “Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index,” Expert Systems with Applications 19, 2000, pp. 125-132.
[3] Fangwen Zhai, Qinghua Wen, Zehong Yang, Yixu Song, “Hybrid Forecasting Model Researchon Stock Data Mining, ” New Trends in Information Science and Service Science (NISS), 2010 4th International Conference on, 2010, pp.630-633
[4] Kawano, S., Huynh, V. N., Ryoke, M., & Nakamori, Y., “A context-dependent knowledge model for evaluation of regional environment,” Environmental Modelling & Software, 20, 2005, pp.343-352.
[5] Fayyad, U., & Stolorz, P., “Data mining and KDD: Promise and challenges,” Further Generation Computer Systems, 13, 1997, pp.99-115.
[6] Berry, M. J. A., & Linoff, G. S., “Data Mining Techniques for Marketing, Sales, and Customer Relationship Management,” NJ: John Wiley & Sons, 1997.
[7] M.J.A. Berry and G.S. Linoff, Data Mining Technique: for marketing, Sales and Customer Support, Wiley Computer Publishing, New York, NY, UAS, 1997.
[8] C. Kleissner, “Data mining for the enterprise,” in Proc. of the Thirty-First Hawaii Int. Conf. on System Sciences, Kohala Coast, USA, vol.7, Jan. 1998, pp.295-304.
[9] Han, J., and Kamber, M., Data Mining Concepts and Techniques (3nd ed.), Morgan Kaufmann, San Francisco, CA, 2012.
[10] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers Inc., San Fransisco, CA, USA, 2001.
[11] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules between Sets of Items in Large Databases,” in Proc. of the ACM SIGMOD Int. Conf. on Management of Data, Washington, D.C., USA, May 1993, pp.207-216.
[12] R. Agrawal and R. Srikant, “Fast algorithm for mining association rules,” in Proc. of the 20th Int. Conf. on Very Large Databases, Santiago, Chile, Sept. 1994, pp.487-499.
[13] Piatetsky-Shapiro,G. “Discovery, Analysis, and Presentation of Strong Rules,” Knowledge Discovery in Databases, AAAI/MIT Press, 1991.
[14] 黃仁鵬、邱顯光、柯柏瑄,「高效率探勘關聯規則之演算法-GSSA」,科技與管理研討會,2006,第414-423頁。
[15] Brin, S., Motwani, R., Ullman, J.D. and Tsur, S., “Dynamic itemset counting and implication rules for market basket data,” SIMOD, 1997, pp. 255-264.
[16] Silberschatz, A. and Tuzhilin, A. “On Subjective Measures of Interestingness in Knowledge Discovery,” First International Conference on Knowledge Discovery and Data Mining, August 1995.
[17] 梅志芳、王建,「關聯規則興趣度問題研究」,計算機工程,第01期,2010,第38-42頁。
[18] Silberschatz, A. and Tuzhilin, A. “What Makes Patterns Interesting in Knowledge Discovery Systems,” IEEE Transactions on Knowledge and Data Engineering 8, 6 (December 1996), pp. 970-974.
[19] 婁蘭芳、蔣志方、田世壯,「影響關聯規則挖掘的有趣性因素的研究」,計算機工程與應用,39(6),2003,第190-192頁。
[20] Albert C.S. Wong and Wai Sum Chan, “Mixture Gaussian Time Series Modelling of Long-Term Market Returns.” North American Actuarial
[21] U.M. Feyyad, “Data mining and knowledge discovery: making sense out of data,” IEEE Expert, vol. 11, Issue 5, Oct. 1996, pp.20-25.
[22] Wang Y. F., Chuang Y. L., Hsu, M. H., and Keh H. C, “A personalized recommender system for the cosmetic business,” Expert Systems with Applications, 26, 2004, pp.427-434.
[23] 蘇建誠,鴻準、可成、F-臻鼎 樂吃蘋果訂單。今周刊。取自http://www.businesstoday.com.tw/
[24] 王皓正,iPhone概念/鴻準可成 買單進駐。聯合新聞網。取自http://udn.com/news/index
[25] Beaver, William H., “Discussion of Market-Based Empirical Research in Accounting: A Review,” Journal of Accounting Research, Supplement, 20, 1982, pp.323-31.
[26] Fama, Eugene F., Foundations of Finance, New York: Basic Books, 1976.
[27] Padmanabhan,B. and Tuzhilin,A. “Unexpectedness as a measure of interestingness in knowledge discovery,” Decision Support Systems , 1999, Vol 27, pp. 303-318
[28] 高勇,啤酒與尿布-神奇的購物籃分析,清華大學出版社,2008
[29] 周皓峰、朱揚勇、施伯樂,「一個基於興趣度的關聯規則的採掘演算法」,計算機研究與發展,39(4),2002,第450-457頁。