現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:LSGM電解質支撐型之全電池製備與燒結機探討 [以論文名稱查詢館藏系統]
論文英文名稱:Preparation of LSGM Electrolyte-Supported Solid Oxide Fuel Cells and Studying on the Sintering Mechanism [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:104
畢業學期:第一學期
出版年度:104
中文姓名:陳劭瑋
英文姓名:Shau-Wei Chen
研究生學號:102788040
學位類別:碩士
語文別:中文
口試日期:2015/12/11
指導教授中文名:吳玉娟
指導教授英文名:Yu-Chuan Wu
口試委員中文名:余炳盛 許志雄 楊永欽
中文關鍵詞:固態電解質、固態反應法、燒結機制、LSGM
英文關鍵詞:Solid state electrolyte, Solid state reaction method, sintering mechanism, LSGM
論文中文摘要:La1-xSrxGa1-yMgyO3-(LSGM)為非常熱門的固態電解質,有優異的離子導電,但以固態合成法卻不易合成純相,固本實驗以兩段式預煆合成法來改善La0.85Sr0.15Ga0.8Mg0.2O2.825 (LSGM1520)不易合成純相之問題。以兩段式預煆合成法所製備的LSGM1520試片,可有效降低LSGM的二次相,並以LSGM1520為電解質、LSCF6428為陰極和6Ni-4SDC20為陽極,製備成全電池,在操作溫度為800°C時的功率密度為370 mW/cm2,而增加中間層LDC46後,在操作溫度為800°C時的功率密度為413 mW/cm2。並以等速率升溫和等溫燒結量測所得的收縮率、密度、緻密化速率和晶粒大小來探討LSGM1520的燒結行為,經過分析可發現LSGM1520在燒結初期的擴散機制為晶界擴散,而擴散活化能為677±37 kJ/mol,在燒結中期緻密化的擴散活化能為680±18 kJ/mol,在燒結後期晶粒成長的擴散活化能為409±37.5 kJ/mol。
論文英文摘要:La1-xSrxGa1-yMgyO3- is a promising candidate for the solid state electrolyte, it has excellent ion conductivity, but it is not easy to synthesize of pure phase in the solid state synthesis, in this experiment, via two-stage calcination synthesis to improve LSGM1520 phase purity, the experiment results can indicate , two-stage calcination synthesis prepared, that can effectively reduce the secondary phase. Electrolyte-supported cells were made of a La0.85Sr0.15Ga0.8Mg0.2O2.825 (LSGM1520), a Ni-SDC anode, a LDC buffer layer between electrode and electrolyte, a LSCF cathode, in order to determine and compare the performance, as a result, maximum power densities of 370 mW/cm2 and 413 mW/cm2, were obtained for the buffered and non-buffered cells respectively. Isothermal sintering method and constant-heating-rate method was used to study the sintering behavior of a LSGM1520, the experiment results can indicate, initial stage sintering was found to be controlled by grain boundary diffusion, diffusion activation energy were determined to be 677±37 kJ/mol, diffusion activation energy of the densification were determined to be 680±18 kJ/mol, diffusion activation energy of the grain growth were determined to be 409±37 kJ/mol.
論文目次:摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 實驗動機 2
1.3 實驗目的 2
第二章 文獻回顧 3
2.1 固態氧化物燃料電池之基本原理 3
2.2 固態電解質簡介 4
2.3 燃料電池陰極簡介 5
2.4 燃料電池陽極簡介 6
2.5 中間功能層簡介 6
2.6 燃料電池之極化影響[1、2] 7
2.7 燃料電池之面比電阻影響[10] 9
2.8 以交流阻抗分析(EIS)判別全電池效能 10
2.9 LSGM系統全電池量測分析 12
2.10 粉體合成 14
2.11 固態燒結原理 15
2.11.1 粉末燒結基本理論 15
2.11.2 燒結之驅動力[23] 17
2.11.3 試片特性對燒結之影響 18
2.11.4 燒結機制模型 18
第三章 實驗方法與步驟 26
3.1 試片製備 28
3.1.1 LSGM電解質製備 28
3.1.2 全電池試片製備 30
3.2 X光繞射分析 32
3.3 掃描式電子顯微鏡分析 32
3.4 阿基米德相對密度分析 33
3.5 交流阻抗量測分析 34
3.6 全電池電性分析 35
3.7 熱機械性質分析 35
第四章 結果與討論 37
4.1 LSGM樣品製備及性質分析 37
4.1.1 XRD分析 37
4.1.2 SEM分析 45
4.1.3 交流阻抗分析 54
4.2 全電池量測分析 67
4.2.1 電極電流收集層對全電池效能之影響 72
4.2.2 電極厚度對電池效能之影響 73
4.2.3 製程(a)、製程(c2)電解質與中間層對全電池之影響 75
4.3 LSGM1520燒結機制探討 84
4.3.1 以等溫燒結率探討燒結機制 88
4.3.2 以等速率升溫探討燒結機制 97
第五章 結論 111
參考文獻 112
附錄 116
論文參考文獻:1.黃鎮江,燃料電池,台中,滄海書局出版社,2008。
2.韋文誠,固態燃料電池技術,新北,高立圖書有限公司,2013。
3.J. B. Goodenough, M. Feng, “A superior oxide-ion electrolyte,” European Journal of Solid State and Inorganic Chemistry, 31, 1994, 663–672.
4.李明澤,固態電解質La1-xSrxGa1-yMgyO3-δ之電性及微觀結構分析,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2011。
5.A. Ansar, D. Soysal, Z. Ilhan, N. Wagner, S. Wolf, R. Ruckdäschel, “Improving Stoichiometry and Processing of LSCF Oxygen Electrode for SOFC,” The Electrochemical Society, 25(2), 2009, 2443–2453.
6.X. C. Lu, J. H. Zhu, “Effect of Sr and Mg Doping on the Property and Performance La1-xSrxGa1-yMgyO3-δ Electrolyte,” Journal of The Electrochemical Society, 155(5), 2008, B494–B503.
7.B. Y. Yoon, J. Bae, “Characteristics of nano La0.6Sr0.4Co0.2Fe0.8O3-δ infiltrated La 0.8 Sr0.2Ga0.8Mg0.2O3-δ scaffold cathode for enhanced oxygen reduction,” International Journal of Hydrogen Energy, 38, 2013, 13399–13407.
8.K. Huang, J. H. Wan, J. B. Goodenough, “Increasing Power Density of LSGM-Based Solid Oxide Fuel Cells Using New Anode Materials,” Journal of The Electrochemical Society, 148, 2001, 788–794.
9.T. W. Eom, H. K. Yang, K. H. Kim, H. H. Yoon, J. S. Kim, S. J. Park, “Effect of interlayer on structure and performance of anode of anode-supported SOFC single cells,” Ultramicroscopy, 2005, 1283–1287.
10.X. D. Zhou, J. W. Templeton, J. W. Stevenson, “On the Thermodynamic Stability and the Kinetic Activity of SOFC Materials,” ECS Transactions, 35(1) , 2011, 1985–1994.
11.G. D. Marco, A. Pilenga, M. Honselaar, T. Malkow, G. Tsotridis, A. Janssen, B. Rietveld, I. Vinke, J. Kiviaho, “SOFC single cell performance and endurance test modules,” JRC Scientific and Technical Report, TM SOFC 01–04 LD/ 05–08 HD, 2010, 28–29.
12.王曉紅,黃宏,燃料電池基礎,台北,全華圖書股份有限公司,2008。
13.S. W. Cheng, C. H. Tsai, S. H. Wu, C. K. Liu, Y. N. Cheng, R. Y. Lee, “Effects of reduction process on the electrochemical and microstructural properties for electrolytesupported SOFC,” International Journal of Hydrogen Energy, 40, 2015, 1534–1540.
14.C. Oncel, B. Ozkaya, M. A. Gulgun, “X-ray single phase LSGM at 1350°C,” Journal of European Ceramic Society, 27, 2007, 599–604.
15.L. Fan, Y. Wang, Z. Jia, Y. Xiong, M. E. Brito, “Nanofiber-structured SSC-GDC composite cathodes for a LSGM electrolyte based IT-SOFCs,” Ceramics International, 41, 2015, 6583–6588.
16.M. Morales, J. M. Pe´rez-Falco´n, A. Moure, J. Tartaj, F. Espiell, “Performance and degradation of La0.8Sr0.2Ga0.85Mg0.15O3-δ electrolyte-supported cells in single-chamber configuration,” International Journal of Hydrogen Energy, 39, 2014, 5451–5459.
17.M. Morales, J. J. Roa, J. Tartaj, M. Segarra, “Performance and short-term stability of single-chamber solid oxide fuel cells based on La0.9Sr0.1Ga0.8Mg0.2O3- electrolyte,” Journal of Power Sources, 216, 2012, 417–424.
18.A. Moure, A. Castro, J. Tartaj, C. Moure, “Single-phase ceramics with La1-x SrxGa1-yMgyO3-δ composition from precursors obtained by mechanosynthesis,” Journal of Power Sources, 188, 2009, 489–497.
19.E. Djurado, M. Labeaub, “Second Phases in Doped Lanthanum Gallate Perovskites,” Journal of the European Ceramic Society, 18, 1998, 1397–1404.
20.閻瑞强,李靈,劉杏芹,孟廣耀,電解質材料Sr和Mg掺雜LaGaO3的制備及性能研究,合肥,無機化學學報,2006年,第3期,542–545。
21.R. L. Coble, “Sintering crystalline solids. II. experimental test of diffusion models in powder compacts,” Journal of Applied Physics, 32, 1961, 793–799
22.陳皇鈞,陶瓷材料概論上冊,台北,曉園出版社,1988。
23.余佾昕,氧化鈦及氧化鎂共添加對氧化鋁燒結行為之影響,碩士論文,國立成功大學資源工程研究所,台南,2007。
24.D. L. Johnson, I. B. Cutler, “Initial stage sintering models and their application to shrinkage of powder compacts,” Journal of The American Ceramic Society, 46, 1963, 541–544.
25.M. J. Bannister, “Shape Sensitivity of Initial Sintering Equations,” Journal of The American Ceramic Society, 51, 1968, 548–553.
26.J. L. Woolfrey, M. J. Bannister, “Nonisothermal Techniques for Studying In itial–Stage Sin tering,” Journal of The American Ceramic Society, 55, 1972, 390–394.
27.J. G. Li, X. Sun, “Synthesis and sintering behavior of a nanocrystalline α-alumina powder,” Acta Materialia, 48, 2000, 3103–3112.
28.De. W. Ni, C. G. Schmidt, “Densification and grain growth during sintering of porous Ce0.9Gd0.1O1.95 tape cast layers: A comprehensive study on heuristic methods,” Journal of the European Ceramic Society, 33, 2013, 2529–2537.
29.Z. He, H. Yuan, J. A. Glasscock, “Densification and grain growth during early-stage sintering of Ce0.9Gd0.1O1.95 in a reducing atmosphere,” Acta Materialia, 58, 2010, 3860–3866.
30.T. S. Zhang, L. B. Kong, X. C. Song, Z. H. Du, W. Q. Xu, S. Li, “Densification behaviour and sintering mechanisms of Cu- or Co-doped SnO2 : A comparative study,” Acta Materialia, 62, 2014, 81–88.
31.R. Polini, A. Pamio, E. Traversa, “Effect of synthetic route on sintering behaviour, phase purity and conductivity of Sr- and Mg-doped LaGaO3 perovskites,” Journal of the European Ceramic Society, 24, 2004, 1365–1370.
32.C. Jin, Z. Yang, H. Zheng, C. Yang, F. Chen, “La0.6Sr1.4MnO4 layered perovskite anode material for intermediate temperature solid oxide fuel cells,” Electrochemistry Communications, 14, 2012, 75–77.
33.李明晉,LSGM-SDC複合電解質的微結構及電性之探討,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2015。
34.S. W. Perng, C. R. Chen, “Numerical Investigation of Anode Thickness on the Performance and Heat/Mass Transport Phenomenon for an Anode-Supported SOFC Button Cell,” Journal of Nanomaterials, 127876, 2015.
35.M. Chen, B. H. Kim, Q. Xu, O. J. Nam, J. H. Ko, “Synthesis and performances of Ni-SDC cermets for IT-SOFC anode,” Journal of the European Ceramic Society, 28, 2008, 2947–2953.
36.潘金生,同健民,田民波,材料科學基礎,北京,清華大學出版社有限公司,1998。
37.L. Cheng, L. Liu, Q. Ma, S. Liu, “Relationship between densification behavior and stabilization of quasi-liquid grain boundary layers in CuO-doped 0.7CaTiO3–0.3NdAlO3 microwave ceramics,” Scripta Materialia, 111, 2016, 102–105.
38.D. C. William, JR, “Materials Science and Engineering: An Introduction,” New York, Wiley, 1994, P428.
39.R. J. Brook, “In Ceramic Fabrication Processes (Ed. by F. F. Y. Wang) , ” Academic Press, New York 1976, P348
論文全文使用權限:同意授權於2021-02-03起公開