現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:Ce0.8Sm0.15R0.05O2-δ (R = Ca、Sr) 電解質支撐型固態氧化物燃料電池製程之改良及微結構分析 [以論文名稱查詢館藏系統]
論文英文名稱:The processing improvement and microstructural analysis of the Ce0.8Sm0.15R0.05O2-𝛿 (R = Ca, Sr) electrolyte-supported fuel cell [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:103
畢業學期:第二學期
中文姓名:廖翊堯
英文姓名:Yi-Yao Liao
研究生學號:102788013
學位類別:碩士
語文別:中文
指導教授中文名:吳玉娟
口試委員中文名:韋文誠;黃炳淮
中文關鍵詞:固態反應法CeO2微結構全電池
英文關鍵詞:Solid state reaction methodCeO2microstructureSingle cell
論文中文摘要:本研究選用在中溫(600~800°C)範圍下離子導電性較佳的CeO2基材為研究方向,主要以固態反應法製備中溫型固態氧化物燃料電池之Ce0.8Sm0.15R0.05O2-δ (R = Ca、Sr),Ce0.8Sm0.2O2-δ (SDC20)藉由摻雜Ca2+或Sr2+ 來降低燒結溫度並且改善試片的緻密性,電解質粉末以單軸成形的方式製備出直徑為29 mm的圓碇,陰陽電極膏經由鋼板印刷於電解質上,電極厚度會影響整體導電性,所以陰陽電極以塗佈一層和三層的方式來尋求電池的最佳導電性。首先,對電解質試片進行XRD、SEM、TMA、Raman、Archimedes分析,再將全電池試片進行XRD、SEM、電化學儀、AC阻抗分析儀等分析,並分析電解質微結構及全電池功率密度性質等探討。
論文英文摘要:Electrolyte-supported solid oxide fuel cell of Ce0.8Sm0.15R0.05O2-𝛿 (R = Ca, Sr) were synthesized by conventional solid state reaction. The study showed that the conductivities of the CeO2-based materials have a higher conductivity at 600-800°C. Densification of SDC pellets was largely improved by doping alkaline earth calcium and strontium cations. The doped calcium and strontium cations also largely decreased the sintering temperature of SDC. The powders pressed into pellets using a uniaxial die-press about 29 mm in diameter. The anode and cathode were stencil-printed on the electrolyte disks. Thickness of electrode will influence the entire conductivity. The thickness will be changed by printing once or three times. The samples were analyzed by XRD, SEM, TMA, Raman, Archimedes, electrical measurement and microstructural analysis.
論文目次:目錄
摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1前言 1
1.2研究動機 1
第二章 文獻回顧 3
2.1 燃料電池之簡介 3
2.2 燃料電池的種類 4
2.3 固態氧化物燃料電池之簡介 5
2.4固態氧化物燃料電池之材料需求與組成 7
2.5 氧化鈰電解質結構 8
2.6燃料電池之極化影響 10
2.7燃料電池之面比電阻影響[9] 11
2.8氧化鈰(CeO2)基電解質摻雜不同元素之影響 12
2.9電解質支撐型全電池量測 16
2.10不同摻雜與製程對電解質顯微結構之影響 27
第三章 實驗方法與步驟 32
3.1粉末分析及試片製備 33
3.2漿料製備 37
3.3相對密度分析 40
3.4 X光繞射分析儀 41
3.5 掃描式電子顯微鏡 41
3.6熱機械分析儀 41
3.7拉曼光譜儀 42
3.8熱重分析儀 42
3.9電化學分析 43
3.10交流阻抗頻譜分析 43
3.11 穿透式電子顯微鏡分析 43
第四章 結果與討論 45
4.1 XRD之分析 45
4.2 繞射峰值偏移與晶格常數之分析 49
4.3 相對密度之分析 52
4-4 顯微結構之分析 53
4-5熱膨脹係數之分析 61
4-6 燒結曲線之分析 63
4-7 拉曼光譜儀之分析 69
4-8 DTA/TGA之分析 71
4-9 全電池量測之分析 72
4-10 電解質之TEM微觀結構分析 90
第五章 結論 105
附錄 113
論文參考文獻:[1] 衣寶廉,燃料電池-原理與應用,五南圖書出版公司,2005年。
[2] 肖鋼,燃料電池技術,全華圖書股份有限公司,2010年3月。
[3] 韋文誠,燃料電池技術,台北,高立圖書有限公司,中華民國102年4月。
[4] 林駿杰,摻雜異價離子(Sm3+、Mg2+、Ca2+、Sr2+、Ba2+)之CeO2基電解質的微結構和性質之分析,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2012年。
[5] 黃鎮江,燃料電池,滄海書局,2008年。
[6] 李明晉,LSGM-SDC複合電解質微結構及電性之探討,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2015年。
[7] G. J. Vanhandel, R. N. Blumenthal, “The temperature and oxygen pressure dependence of the ionic transference number of non-stoichiometric CeO2,” Journal of The Electrochemical Society, 121[9] (1974), 1198–1202.
[8] 張承龍,固態氧化物燃料電池之LaGaO3基電解質的結構模擬及探討,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2013年。
[9] X. D. Zhou, J. W. Templeton, J. W. Stevenson, “On the Thermodynamic Stability and the Kinetic Activity of SOFC Materials,” ECS Transactions, 35 [1] (2011), 1985–1994.
[10] D.Y. Wang, D. S. Park, J. Griffith, A.S. Nowick, “Oxygen-ion conductivity and defect interactions in yttria-doped ceria,” Solid State Ionics, 2 (1981), 95–105.
[11] C. Tian, S. W. Chan, “Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3,” Solid State Ionics, 134 (2000), 89–102.
[12] J. A. Kilner, “Fast anion transport in solids,” Solid State Ionics, 8 (1983), 201–207.
[13] H. Yahiro, T. Ohuchi, K. Eguchi, H. Aria, “Electrical properties and microstructure in the system ceria-alkaline earth oxide,” Journal of Materials Science, 23 (1988), 1036–1041.
[14] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, “Electrical properties of ceria-based oxides and their application to solid oxide fuel cells,” Solid State Ionics, 52 (1992), 165–172.
[15] J. Ma, T. S. Zhang, L. B. Kong, P. Hing, S. H. Chan, “Ce0.8Gd0.2O2−δ ceramics derived from commercial submicron-sized CeO2 and Gd2O3 powders for use as electrolytes in solid oxide fuel cells,” Journal of Power Sources, 132[1-2] (2004), 71–76.
[16] Y. P. Fu, S. H. Chen, J. J. Huang, “Preparation and characterization of Ce0.8M0.2O2Ld (M=Y, Gd, Sm, Nd, La) solid electrolyte materials for solid oxide fuel cells,” International Journal of Hydrogen Energy, 35 (2010), 745–752.
[17] F. Ye, T. Mori, D. R. Ou, J. Zou, G. Auchterlonie, J. Drennan, “Compositional and structural characteristics of nano-sized domains in gadolinium-doped ceria,” Solid State Ionics, 179[21-26] (2008), 827–831.
[18] Y. C. Wu, C. C. Lin, “The microstructures and property analysis of aliovalent cations (Sm3+, Mg2+, Ca2+, Sr2+, Ba2+) co-doped ceria-base electrolytes after an aging treatment,” International Journal of Hydrogen Energy, 39 (2014), 7988–8001.
[19] W. Zhong, Y. Ling, Y. Rao, R. Peng, Y. Lu, “Calcium doped Y3Fe5O12 as a new cathode material for intermediate temperature solid oxide fuel cells,” Journal of Power Sources, 213(2012), 140–144.
[20] Z. Liu, D. Ding, M. Liu, X. Ding, D. Chen, X. Li, C. Xia, M. Liu, “High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures,” Journal of Power Sources, 241(2013), 454–459.
[21] J. H. Joo, G. M. Choi, “Thick-film electrolyte (thickness <20 m)-supported solid oxide fuel cells,” Journal of Power Sources, 180(2008), 195–198.
[22] Z. Liu, D. Ding, M. Liu, X. Li, W. Sun, C. Xia, M. Liu, “Highly active Sm0.2Ce0.8O1.9 powders of very low apparent density derived from mixed cerium sources,” Journal of Power Sources, 229 (2013), 277–284.
[23] L.P. Sun, M. Rieu, J. P. Viricelle, C. Pijolat, H. Zhao, “Fabrication and characterization of anodesupported single chamber solid oxide fuel cell based on La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.9Gd0.1O1.95 composite cathode,” International Journal of Hydrogen Energy, 39 (2014), 1014–1022.
[24] S. Lee, M. B. Choi, H. P. Dasari, J. Hong, H. Kim, J. W. Son, J. H. Lee, B. K. Kim, H. J. Je, K. J. Yoon, “Role of Ceria-Zirconia Solid Solution with High Oxygen StorageCapacity in Cermet Anodes of Solid Oxide Fuel Cells,” Journal of The Electrochemical Society, 161 (9) (2014), 883–888.
[25] T. Mori, J. Drennan, “Influence of microstructure on oxide ionic conductivity in doped CeO2 electrolytes,” Journal of Electroceramics , 17 (2006), 749–757.
[26] T. Mori, J. Drennan, J. H. Lee, J. G. Li, T. Ikegami, “Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems,” Solid State Ionics, 154-155 (2002), 461–466.
[27] T. Mori, Y. Wang, J. Drennan, G. Auchterlonie, J. G. Li, T. Ikegami, “Influence of particle morphology on nanostructural feature and conducting property in Sm-doped CeO2 sintered body,” Solid State Ionics, 175 (2004), 641–649.
[28] Z. P. Li, T. Mori, J. Drennan, G. J. Auchterlonie, J. Zou, J. Drennan, “Nanodomain formation and distribution in Gd-doped ceria,” Materials Research Bulletin, 47 (2012), 763–767.
[29] Y. Zheng, S. He, L. Ge, M Zhou, H. Chen, L Guo, “Effect of Sr on Sm-doped ceria electrolyte,” International Journal of Hydrogen Energy, 39 (2011), 5128–5135.
[30] M. Chen, B. H. Kim, Q. Xu, O. J. Nam, J. H. Ko, “Synthesis and performances of Ni-SDC cermets for IT-SOFC anode,” Journal of the European Ceramic Society, 28 (2008), 2947–2953.
[31] Y. Q. Song, H. W. Zhang, Y. L. Liu, Y. X. Li, L. R. Shah, J. Q. Xiao, “Annealing effects on the ferromagnetism of Ce0.97Co0.03O2 compounds,” Physica B, 405 (2010), 2530–2533
[32] B. Choudhury, P. Chetri, A. Choudhury, “Oxygen defects and formation of Ce3+ affecting the photocatalytic performance of CeO2 nanoparticles,” Royal Society of Chemistry 4 (2014), 4663–4671.
[33] J. C. Chang, M. C. Lee, R. J. Yang, Y. C. Chang, T. N. Lin, C. H. Wang, W. X. Kao, L. S. Lee,” Fabrication and characterization of Sm0.2Ce0.8O2-δ-Sm0.5Sr0.5CoO33-δ composite cathode for anode supported solid oxide fuel cell, ” Journal of Power Sources 196 (2011), 3129–3133.
[34] Y. Wang, X. Zhao, S. Lu, B. Yu, X. Meng, Y. Zhang, J. Yang, C. Fu, Y. Ji, “(Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ as cathode material for CeO2-based intermediate-temperature solid-oxide fuel cell, ” Ceramics International 40 (2014), 7321–7327.
[35] J. Zhang, Y. Ji, H. Gao, T. He, J. Liu, “Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for intermediate-temperature solid oxide fuel cells,” Journal of Alloys and Compounds 395 (2005), 322–325.
[36] D. Xu, S. Xu, “Preparation and properties of Ni-doped Ce0.85Sm0.15O1.925 ceramics for use as electrolytes in IT-SOFCs,” Advanced Materials Research 608-609 (2013), 941–944.
[37] S. Zha, W. Rauch, M. Liu, “Ni-Ce0.9Gd0.1O1.95 anode for GDC electrolyte-based low-temperature SOFCs,” Solid State Ionics 166 (2004), 241–250.
[38] S. Lu, G. Long, X. Meng, Y. Ji, B. Lu, H. Zhao, “PrBa0.5Sr0.5Co2O5-x as cathode material based on LSGM and GDC electrolyte for intermediate-temperature solid oxide fuel cells,” International Journal of Hydrogen Energy, 37 (2012), 5914–5919.
[39] S. F. Wang, C. T. Yeh, Y. R. Wang, Y. F. Hsu, “Effects of (LaSr)(CoFeCu)O3-δ cathodes on the characteristics of intermediate temperature solid oxide fuel cells,” Journal of Power Sources 201 (2012), 18–25.
[40] I. Kivi, I. Drovtar, E. Anderson, J. Aruväli, K. Tammc, N. Gunnar, et al. “Influence of cathode thickness on the oxygen reduction kinetics at the intermediate temperature SOFC cathodes” ECS Transactions, 35 (2011), 2349–2355.
[41] 王曉紅,黃宏,燃料電池基礎,台北:全華圖書股份有限公司,2008。
[42] Z. Zhao, L. Liu, X. Zhang, B. Tu, D. Ou, M. Cheng, “Carbonates formed during BSCF preparation and their effects on performance of SOFCs with BSCF cathode,” International Journal of Hydrogen Energy, 37 (2012), 19036–19044.
[43] 李明翰,摻雜異價離子(Sm3+、Ca2+ )對CeO2 基電解質的顯微結構和性質之分析,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2010年。
[44] D. B. Williams and C. B. Carter, Transmission Electron Microscopy, Diffraction II, Plenum Publishing Corporation, New York 2009, p. 277.
[45] T. Mori, J. Drennan, Y. Wang, J. G. Li and T. Ikegami, “Influence of nano-structure on electrolytic properties in CeO2 based system,”Journal of Thermal Analysis and Calorimetry, Vol. 70 (2002), 309–319.
[46] D. R. Ou, T. Mori, F. Ye, T. Kobayashi, J. Zou, G. Auchterlonie and J. Drennan, “Oxygen vacancy ordering in heavily rare-earth-doped ceria,”Applied Physics Letters 89, (2006), 171911.
[47] N. Gabbitas, J. G. Thompson, R. L. Withers, A. D. Rae, “A signle crystal X-ray study of the fluorite-related “solid solutions” of CeO2-YO1.5,”Journal of Solid State Chemistry 115, (1995), 23–36.
[48] Q. Guo, Y. Zhao, C. Jiang, W. L. Mao, Z. Wang, “Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation,”Solid State Communications, 145 (2008), 250–254.
[49] Y. C. Wu, C. Y. Chen, H. Y. Lu, D. E. McCauley, and M. S.H. Chu, “Dislocation loops in pressureless-sintered undoped BaTiO3 ceramics,”Journal of the American Ceramic Society, 89 [7] (2006), 2213–2219.
論文全文使用權限:同意授權於2020-08-14起公開