現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以Fabry-Perot濾波器原理研製金屬-介質多層膜超穎材料 [以論文名稱查詢館藏系統]
論文英文名稱:Metal-dielectric multilayered metamaterials developed based on Fabry-Perot filters [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:103
畢業學期:第二學期
中文姓名:呂昆翰
英文姓名:Kun Han Lu
研究生學號:102658055
學位類別:碩士
語文別:中文
口試日期:2015/07/08
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen
口試委員中文名:林宗賢;李正中;嚴大任
中文關鍵詞:超穎材料光學導納設計負折射率
英文關鍵詞:Metamaterialsdesign of optical admittance diagramnegative refractive index
論文中文摘要:以傳統金屬-介電質-金屬薄膜構成的Fabry-Perot濾波器為基礎,用光學導納軌跡的設計方式修正為非對稱多層膜堆疊的低損耗窄帶通濾波器已經被提出。這類修正型窄帶通濾波器增加金屬膜層數構成金屬-介質多層膜堆,在窄化半高寬的條件之下仍能維持高穿透峰值。其中介電質材料選擇高折射率材料,此金屬-介質多層膜堆能設計為負折射率超穎材料同時其穿透光譜不隨角度變化。研究中利用轉移矩陣法的數值計算,求出超穎材料斜向入射的等效光學常數為負折射率,並且藉由有限元素分析法的模擬軟體驗證負折射波前;基於超穎材料的設計,進一步用物理氣相沉積法來實現此多層膜堆,再者分析量測實作樣品各膜層的實際光學參數,來驗證金屬-介質多層膜超穎材料的等效光學性質。
論文英文摘要:Based on the traditional metal-dielectric-metal Fabry-Perot filter, a non-symmetrical, multilayered and low-loss narrow band pass filter (NBPF) has been developed. Such modified NBPF could kept the high value of transmission peak with a narrow full-width-half-maximum achieved by additional metal films, and therefore a metal-dielectric multilayer would be arranged. By choosing a proper high refractive index dielectric material, the metal-dielectric multilayer could be a negative refractive index metamaterial and its spectrum depended weakly on the incident angle. The all-angle negative effective refractive index could be calculated through transfer matrix method and confirmed according to the refracted wavefront simulated by the finite element analysis. Further, the design of metamaterial was fabricated by physics vapor deposition and the optical property was also verified by analyzing the optical constants of each layer.
論文目次:中文摘要-page i
英文摘要-page ii
誌謝-page iii
目錄-page iv
表目錄-page vii
圖目錄-page viii

第一章 前言與文獻回顧-1
1.1 超穎材料1
1.2 多層膜完美透鏡-page 3
1.3 光子晶體-page 8
1.4 Fabry-Perot干涉儀-page 14
1.5 研究動機-page 16
第二章 原理-page 18
2.1光學導納-page 18
2.1.1膜矩陣-page 18
2.1.2金屬的膜矩陣-page 20
2.1.3金屬的導納軌跡-page 20
2.1.4斜向入射膜矩陣-page 23
2.2 超穎材料的斜向入射等效光學參數-page 24
2.2.1轉移矩陣-page 24
2.2.2斜向入射等效參數推導-page 26

第三章 設計與模擬-page 29
3.1 修正型窄帶通濾波器的設計方法-page 29
3.1.1 設定設計目標:λpeak、Tpeak與光譜範圍-page 29
3.1.2 傳統Fabry-Perot窄帶通濾波器-page 30
3.1.3修正型窄帶通濾波器的大導納軌跡設計原則-page 32
3.1.4第一層金屬與第二層介質的設計:大導納軌跡-page 32
3.1.5第三層金屬的設計:接回導納原點-page 34
3.1.6第四層介質與第五層金屬的設計:導納匹配-page 36
3.1.7修正型窄帶通濾波器的結果-page 38
3.1.8修正型窄帶通濾波器的光譜與組態討論-1:中間三層MDM構成的Spacer-page 40
3.1.9修正型窄帶通濾波器的光譜與組態討論-2: 最外層兩層金屬構成的Mirror-page 44
3.1.10修正型窄帶通濾波器設計方法的結論-page 47
3.2 負折射率多層膜的設計-page 47
3.2.1負折射率多層膜的設計原則-page 47
3.2.2設計負折射率的材料參數-page 49
3.2.3負折率多層膜的設計結果與厚度比較-page 50
3.2.4 隨入射角改變之Fabry-Perot共振腔的相位變化-page 54
第四章 實驗與量測-page 56
4.1 鍍膜系統-page 56
4.1.1 物理氣象沉積法之電漿濺鍍-page 56
4.1.2真空抽氣系統-page 56
4.1.3冷卻系統-page 57
4.1.4實驗流程-page 57
4.2 椭偏儀量測-page 58
4.2.1 橢圓偏光術與量測-page 58
4.2.2橢圓偏光術的資料分析-page 60
4.3 光譜量測-page 60
第五章 實驗結果-page 62
5.1 多層膜堆疊的超穎材料樣品-page 62
5.2 以模擬方式驗證左手性材料實驗樣品-page 64
第六章 結論-page 65
參考文獻-page 66
論文參考文獻:[1] P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nature Photon.7, 791–795 (2013).
[2] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,“Magnetism from Conductors and Enhanced Nonlinear Phenomena,”IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[3] J. B. Pendry,“Negative refraction,” Contemporary Physics, volume 45, number 3, pp. 191-202, January-February(2004).
[4] J. B. Pendry, D. Schurig, D. R. Smith,“Controlling Electromagnetic Fields,” Science, Vol. 312 (2006).
[5] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp., 10, 509−514 (1968).
[6] J. B. Pendry, “Negative refraction makes a perfect lens,”Phys. Rev. Lett., 85, 3966−3969 (2000).
[7] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz,“Composite Medium with Simultaneously Negative Permeability and Permittivity”, Phys. Rev. Lett., 18(4), 4184-4187 (2000).
[8] R. A. Shelby, D. R. Smith, S. Schultz,“Experimental Verification of a Negative Index of Refraction”, Science, Vol. 292 , pp. 77-79 (2001).
[9]T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec,“All-angle negative refraction and active flat lensing of ultraviolet light,”Nature 497, 470-474 (2013)
[10]C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer,“Retrieving effective parameters for metamaterials at oblique incidence,”Phys. Rev. B77, 195328 (2008).
[11]Alexander V. Kildishev, Wenshan Cai, Uday K. Chettiar, Hsiao-Kuan Yuan, Andrey K. Sarychev, Vladimir P. Drachev, and Vladimir M. Shalaev,“Negative refractive index in optics of metal–dielectric composites,”J. Opt. Soc. Am., Vol. 23, No. 3 (2006)
[12]A. Macleod,“Optical Thin-Film Metamaterials,”SVC Bulletin, spring 2014, pp. 24-31 (2014)
[13] E. Verhagen, R. D. Waele, L. Kuipers, and A.Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett.105, 223901 (2010).
[14] R.Maas, E. Verhagen, J. Parsons, and A. Polman,“Negative Refractive Index and Higher-Order Harmonics in Layered Metallodielectric Optical Metamaterials,” ACS Photonics, 1 (8), pp 670–676 (2014)
[15] A. Beiser,“Modern Physics,”6th Edition, pp. 335-386, McGraw-Hill Press (2003).
[16] Sajeev John,“Strong Localization of Photons in Certain Disordered Dielectric Superlattices,”Phys. Rev. Lett. 58, 2486 (1987).
[17] Eli Yablonovitch,“Inhibited Spontaneous Emission in Solid-State Physics and Electronics” ”Phys. Rev. Lett. 58, 2059 (1987).
[18] M. Born, and Wolf,“E. Principles of optics,”7th edition, pp. 359-405, Cambridge Univ. Press (1999)
[19] John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn and Robert D. Meade,“Photonic crystal Molding the Flow of Light,” 2nd edition, Princeton Univ. Press (2008)
[20] P. St. J. Russel, T. A. Birks, and F. D. Lloyd-Lucas,“Confined Electrons and Photons,”edited by E. Burstein and C. Weisbuch, pp. 585-633, Plenum Press (1995)
[21] P. Yeh, “Optical Waves in Layered Media,” Wiley, New York(2005)
[22]K. Sakoda, “Optical Properties of Photonic Crystals,” 2nd edition, Springer Press(2004)
[23] Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Mater. 10, 582–586 (2011).
[24] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science, 321, 930 (2008).
[25] E. Hetch,“Optics,”4th Edition, pp. 416-425, Addison Wesley Press (2002).
[26] K. Hirabayashi, H. Tsuda, and T. Kurokawa,“Tunable Liquid-Crystal Fabry-Perot Interferometer Filter for Wavelength-Division Multiplexing Communication Systems,” J. Lightwave Technol., Vol. 11, No. 12 (1993).
[27] C.A. Brackett, “Dense Wavelength Division Multiplexing Networks: Principles and Applications,” IEEE J. Selected Areas Commun., vol. 8, 948-64 (1990)
[28] B. E. A. Saleh, and M. C. Teich“Fundamentals of Photonics,”2nd Edition, Wiley Press, pp. 494-541 (2007)
[29]LIGO, http://www.ligo.org/index.php
[30] A. Macleod,“Thin-Film Optical Filters,”4th edition, Institute of Physics Publishing Press (2010).
[31]李正中,光學薄膜與鍍膜技術,台北:藝軒圖書出版社,2012,第88頁
[32] Y.J. Jen, W.C. Liu, C.Y. Jheng, “Design a symmetrical film stack as a negative index metamaterial,” Proc. of SPIE Vol. 9172 917204-9(2014).
[33] Shvets, G. Photonic approach to making a material with a negative index of refraction. Phys. Rev. B 67, 035109 (2003).
[34] Shin, H. & Fan, S. All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure. Phys. Rev. Lett. 96, 073907 (2006).
[35] Alu` , A. & Engheta, N. Optical nanotransmission lines: synthesis of planar lefthanded metamaterials in the infrared and visible regimes. J. Opt. Soc. Am. B 23, 571–583 (2006).
[36] Lezec, H. J., Dionne, J. A. & Atwater, H. A. Negative refraction at visible frequencies. Science 316, 430–432 (2007).
論文全文使用權限:同意授權於2020-07-22起公開