現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:利用遮蔽效應沉積金屬奈米螺旋陣列並探討其結構與光學特性 [以論文名稱查詢館藏系統]
論文英文名稱:Shadowing deposited metal nano-helix array:morphology and optical properties analysis [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:103
畢業學期:第二學期
出版年度:104
中文姓名:詹森
英文姓名:Chan San
研究生學號:102658019
學位類別:碩士
語文別:中文
口試日期:2015/07/09
指導教授中文名:任貽均
口試委員中文名:任貽均;陳學禮;黃逸帆;成柏翰
中文關鍵詞:斜向沉積技術遮蔽效應金屬螺旋結構圓偏振光
英文關鍵詞:glancing angle depositionshadowing effectmetal helix arraycircularly polarized
論文中文摘要:本研究利用斜向角度沉積技術(GLAD)與低溫製程系統,沉積金、銀、鋁奈米螺旋陣列。當基板溫度低於-140˚C時,使得原子表面遷移率降低,可使遮蔽效應發生於無種子層的基板上,證明遮蔽效應在低溫及高蒸鍍角下仍有此現象。固定沉積速率並搭配基板旋轉轉速下,鍍製出最佳的螺旋結構。奈米螺旋陣列形態和我們所選擇的金屬材料有關,當基板轉速增加,結構由螺旋狀轉為螺絲釘狀。入射左右旋光量測三種螺旋結構的穿透率、反射率、吸收率求得非均向性(g-factor)並比較於模擬結果。此量測結果表示金螺旋陣列擁有強烈的g-factor可媲美於現今的超強對掌性結構。
論文英文摘要:In this work gold, silver, and aluminum nano-helix array were deposited by glancing angle deposition in a substrate cooling system. Temperature below -140˚C reduced the surface mobilities of adatoms and enabled the shadowing effect occurred on a non-seeding substrate. It is demonstrated that the shadowing deposition can be achieved under low temperature and highly glancing deposition. The spin rate of the substrate was tuned to match the fixed deposition rate to optimize the helical nanostructure. The morphology of the nano-helix array depends on the metal material we chose. While the substrate rotation rate increase, the spiral-like nano-helix array are changed to screw-like nano-helix array. The left-handed and right-handed circularly polarized transmittance, reflectance, absorbance and g-factor spectra of the sample were measured and compared with simulation results. The measured results show the gold spiral-like NHA owns strong g-factor that is comparable with recent superchiral structures.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 前言與文獻回顧 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 奈米結構製程回顧 2
1.2.2 螺旋結構光學特性 12
1.2.3 模擬金屬螺旋結構 13
1.2.4 圓偏極應用 18
1.3 研究動機 19
第二章 製鍍原理與介紹 20
2.1 斜向角度沉積技術介紹 20
2.1.1 斜向角度沉積原理 20
2.1.2 斜向角度沉積入射角和柱狀傾角關係 21
2.1.3 擴散常數 21
2.1.4 遮蔽效應 22
第三章 實驗架構與量測系統 23
3.1 鍍膜系統 23
3.1.1 實驗流程 24
3.1.2 薄膜製程 26
3.1.3 斜向蒸鍍時搭配液態氮冷卻系統製鍍前注意事項 26
3.2 光譜量測系統 27
第四章 實驗量測結果與分析 28
4.1 金屬螺旋結構與鍍製參數 28
4.1.1 蒸鍍速率與轉速的關係 29
4.2 金螺旋陣列 30
4.2.1 金螺旋陣列-0.017rpm 30
4.2.2 金螺旋陣列-0.0234rpm 31
4.2.3 金螺旋陣列-0.029rpm 32
4.2.4 金螺旋陣列-0.035rpm 33
4.2.5 金螺旋結構陣列參數總整理及歸納 34
4.3 銀螺旋陣列 35
4.3.1 銀螺旋陣列-0.0117rpm 35
4.3.2 銀螺旋陣列-0.017rpm 36
4.3.3 銀螺旋陣列-0.0234rpm 37
4.3.4 銀螺旋陣列-0.029rpm 38
4.3.5 銀螺旋陣列-0.035rpm 39
4.3.6 銀螺旋結構陣列參數總整理及歸納 40
4.4 鋁螺旋陣列 41
4.4.1 鋁螺旋陣列-0.0234rpm 41
4.4.2 鋁螺旋陣列-0.029rpm 42
4.4.3 鋁螺旋陣列-0.035rpm 43
4.4.4 再現鋁螺旋陣列-0.029rpm 44
4.4.5 鋁螺旋結構陣列參數總整理及歸納 45
4.5 模擬金、銀、鋁螺旋陣列光譜與g-factor 46
4.5.1 模擬金、銀、鋁螺旋陣列穿透與反射光譜 47
4.5.2 模擬金、銀、鋁螺旋陣列Extinction光譜 48
4.5.3 模擬金、銀、鋁螺旋陣列g-factor 49
第五章 結論 50
參考文獻 51
論文參考文獻:[1] John G. Gibbs, Andrew G. Mark, Tung-Chun Lee Sahand Eslami, Debora Schamel and Peer Fisher et al., "Nanohelices by shadow growth," Nanoscale 6, 9457-9466 (2014).
[2] D. Vicka, L.J. Friedricha, S.K. Dewa, M.J. Bretta, K. Robbiea, M. Setoa, T. Smy., "Self-shadowing and surface diffusion effects in obliquely deposited thin film," Thin Solid Films 339, 88-94 (1999).
[3] K. Robbie, M.J. Brett and Akhlesh Lakhtakia, "First thin film realization of a helicoidal bianisotropic medium," J. Vac. Sci. Technol. A 13, 2991 (1995).
[4] Y-J Jen, C-F Lin, and M-J Lin, "Slanted S-shaped nano-columnar thin films for broadand and wide-angle polarization conversion," Opt. Materials Express 1,525-534 (2011).
[5] K. Robbie and M.J. Brett., "Sculptured thin films and glancing angle deposition: Growth mechanics and applications," J. Vac. Sci. Technol. A, 15, 1460-1465 (1997).
[6] Justyna K. Gansel, Michael Thiel, Michael S. Rill, Manuel Decker, Klaus Bade, Volker Saile, Georg von Freymann, Stefan Linden, Martin Wegener., "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science. 325, 1513-1515 (2009).
[7] Marco Esposito, Vittorianna Tasco, Francesco Todisco, Alessio Benedetti ,Daniele Sanvitto, and Adriana Passaseo., "Three Dimensional Chiral Metamaterial Nanospirals in the Visible Range by Vertically Compensated Focused Ion Beam Induced-Deposition," Adv. Optical Mater. 16, 154-161 (2013).
[8] Bettina Frank, Xinghui Yin, Martin Schaferling, Jun Zhao, Sven M. Hein, Paul V. Braun, and Harald Giessen., "Large-Area 3D Chiral Plasmonic Structires," ACS Nano. 7, 6321-6329 (2013).
[9] Dhruv P. Singh, Pratibha Goel, and J. P. Singh, "Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures," Journal of Applied Physics. 112, 104324, 1-6 (2012).
[10] G. K. Larsen, Y. He, J. Wang, and Y.-P. Zhao, "Scalable Fabrication of Composite Ti/Ag Plasmonic Helices: Controlling Morphology and Optical Activity by Tailoring Material Properties," Adv. Optical Mater. 2, 245-249 (2014).
[11] Andrew G. Mark, John G. Gibbs, Tung-Chun Lee and Peer Fischer., "Hybrid nanocolloids with programmed three-dimensional shape and material composition," nature materials. 12.802-807 (2013).
[12] J. P. Singh, Thomas E. Lanier, Hao Zhu, William M. Dennis, Ralph A. Tripp, and Yiping Zhao., "Highly Sensitive and Transparent Surface Enhanced Raman Scattering Substrates Made by Active Coldly Condensed Ag Nanorod Arrays," J. Phys. Chem. C, 116, 20550-20557 (2012).
[13] M. J. Brett and B. Dick, "Controlled growth of periodic pillars by glancing angle deposition," J. Vac. Sci. Technol. B 21,1071-1023 (2003).
[14] Johnson Haobijam Singh, Greshma Nair, Arijit Ghosh and Ambarish Ghosh., "Wafer scale fabrication of porous three-dimensional plasmonic metamaterials for the visible region: chiral and beyond†," Nanoscale. 5, 7224-7228 (2013).
[15] Justyna K. Gansel, Martin Wegener, Sven Burger, and Stefan Linden., "Gold helix photonic metamaterials: A numerical parameter study," Optics express. 18, 1059-1069 (2010).
[16] Justyna K. Gansel, Michael Latzel, Andreas Frölich, Johannes Kaschke, Michael Thiel, and Martin Wegener., "Tapered gold-helix metamaterials as improved circular polarizers," Applied Physics Letters. 100, 101109, 1-3 (2012).
[17] R. N. Tait, T. Smy and M. J. Brett, "Modelling and characterization of columnar growth in evaporated films," Thin Solid Films. 226, 196-201 (1993).
[18] L. Abelmann and C. Lodder, "Oblique evaporation and surface diffusion," Thin Solid Films, 305, 1-21 (1997).
[19] Kate Kaminska and Kevin Robbie, "Birefringent omnidirectional reflector," Applied Optics. 43, No-7, 1570-1576 (2004).
[20] K. Robbie, J. C. Sit, and M. J. Brett, "Advanced techniques for glancing angle deposition," J. Vac. Sci. Technol. B 16, 1115-1122 (1998).
[21] P. B. Johnson, R. W. Christy, Phsy. Rev. B 6, 12 (1972).
[22] E. D. Palik, Ed., Handbook of Optical Constants of Solid, Academic, New York (1998).
論文全文使用權限:同意授權於2020-07-21起公開