現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:模擬生物訊號放大之策略建立具高靈敏度之汞離子螢光檢測平台 [以論文名稱查詢館藏系統]
論文英文名稱:Ultrasensitive fluorescent platform design for mercury detection via bioinspired auto-inductive signal amplification strategy [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程與生物科技系生化與生醫工程碩士班
畢業學年度:103
畢業學期:第二學期
中文姓名:林思廷
英文姓名:Lin Szu Ting
研究生學號:102688005
學位類別:碩士
指導教授中文名:黃聲東
口試委員中文名:郭憲壽;林俊茂
中文關鍵詞:汞氧化反應,螢光分子探針,自我斷裂釋放機制,自我催化訊號放大反應
英文關鍵詞:Oxymercuration,Fluorescent probe,Self-Immolative Elimination,Auto- Inductive signal amplification reaction
論文中文摘要:本論文透過訊號放大概念建立高靈敏度之汞離子螢光檢測平台,且設計並合成對於汞離子具有專一作用之新隱藏型短波長螢光探針,AYF。新隱藏型短波長螢光探針AYF是利用炔類官能基與Hg(II)進行汞氧化反應,接著利用環境中的水分子對探針AYF進行水解反應,最後由β脫去反應釋放螢光分子及二級訊號(氟離子),此過程為一個自發且不可逆的過程,上述之螢光分子所釋放出來的短波長訊號於λem=460 nm可被偵測。單探針AYF之最低偵測極限為1 ppm,而本論文仿造生物體內訊號傳遞的途徑,將AYF搭配多種氟離子探針:DCC (λem=595 nm)、DPF1 (λem=460 nm)、DPF2,且分別進行訊號傳遞(AYF+DCC) 與自我循環訊號放大(AYF+DPF1、AYF+ DPF1+DCC、AYF+ DPF2+DCC)之機制探討。最後透過多種探針搭配組合之結果分析比對,所提出之AYF+ DPF1+DCC組合的最低偵測極限為0.07 ppb,較單探針放大14000倍。
論文英文摘要:The objective of this thesis is to construct an ultrasensitive fluorescent platform via bioinspired concept as well as to design and synthesize a short-wavelength fluorescent probes, called AYF. The proposed novel AYF recognize Hg (II) to achieve oxymercuration by the alkyl functional group. Fluorescent molecule(λem=460 nm) and second messenger (two equivalents fluoride ions) are released after a series of reaction, including oxymercuration, hydrolysis andβ-elimination. The conventional LOD of AYF is 1ppm. In order to improve the sensitivity, the thesis mimics the pathway of signal transduction by Organism as well as combines AYF with other probes for detecting fluoride: DCC (λem = 595 nm), DPF1 (λem = 460 nm) and DPF2 to prove hypothesizes of signal transduction and signal amplification. Finally, experimental results demonstrate that the LOD is 0.07 ppb with the proposed combination strategy of AYF, DPF1 and DCC, which is 14000 times lower than the detection method with single probe.
論文目次:摘 要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VIII
圖目錄 IX
第一章 前言 1
第二章 文獻探討 2
2.1檢測的重要性 2
2.2螢光光譜檢測法 3
2.2.1螢光原理 4
2.2.2短波長螢光分子探針 4
2.2.3長波長螢光分子探針 6
2.3汞離子檢測器 8
2.3.1核酸鹼基-胸腺嘧啶 9
2.3.2 硫脫去反應 10
2.3.3汞氧化反應 10
2.3.4汞離子探針文獻 11
2.4 自我斷裂釋放機制 13
2.5訊號放大法 14
第三章 研究動機與目的 17
3.1汞離子探針設計概念與偵測機制 18
3.2訊號放大系統之設計概念與偵測機制 20
3.2.1搭配訊號放大螢光分子探針(DPF1) 20
3.2.2搭配訊號放大分子探針(DPF2) 21
第四章 材料與方法 24
4.1實驗儀器 24
4.2實驗藥品 24
4.3合成步驟 26
4.3.1化合物7-oxy-(3-butynyl)-8-aldehydecoumarin之合成方法 26
4.3.2化合物7-oxy-(3-butynyl)-8-difluridecoumarin 之合成方法 27
4.3.3化合物4-[(tert-butyldiphenylsilyl)oxy]benzyl [4-(difluoromethyl)phenyl]carbamate之合成方法 28
4.4螢光訊號(Fluorescence spectra)檢測 29
4.4.1化合物AYF之螢光隱藏性檢測 29
4.4.2化合物AYF與Hg(II)之釋放螢光檢測 29
4.4.3化合物AYF+DCC與Hg(II)之釋放螢光檢測 30
4.4.4化合物AYF+DPF1與Hg(II)之釋放螢光檢測 30
4.4.5化合物AYF+DPF1+DCC與Hg(II)之釋放螢光檢測 31
4.4.6化合物AYF+DPF2+DCC與Hg(II)之釋放螢光檢測 31
第五章 結果與討論 32
5.1全合成實驗步驟 32
5.1.1化合物AYF之全合成 32
5.1.2化合物DPF2之全合成 33
5.2螢光訊號(Fluorescence spectra)檢測 34
5.2.1螢光隱藏性檢測 34
5.2.2實驗條件選擇 35
5.2.2.1反應溶劑之選擇 35
5.2.2.2反應溫度之選擇 37
5.2.2.3反應時間之選擇 38
5.2.3訊號傳遞之檢測 39
5.2.4訊號放大之檢測 41
5.2.4.1雙探針組合AYF+DPF1 42
5.2.4.2三探針組合AYF+DPF2+DCC 43
5.2.4.3三探針組合AYF+DPF1+DCC 45
5.3綜合討論 47
5.3.1訊號傳遞機制之結果驗證及比較 49
5.3.2訊號放大機制之結果驗證及比較 49
5.3.3高靈敏度螢光平台之建立及文獻對照 50
第六章 結論 53
參考文獻 54
附錄 59
1.1化合物AYA之1H-NMR圖譜 59
1.2化合物AYA之IR圖譜 60
1.3化合物AYA之Mass圖譜 61
2.1化合物AYF之1H-NMR圖譜 62
2.2化合物AYF之IR圖譜 63
2.3化合物AYF之Mass圖譜 64
3.1化合物DPF2之1H-NMR圖譜 65
3.2化合物DPF2之IR圖譜 66
3.3化合物DPF2之Mass圖譜 67
4.化合物DPF1與緩衝溶液之反應結果圖 68
5.1化合物DCC與Hg(II)之反應結果圖 69
5.2化合物DPF1與Hg(II)之反應結果圖 70
5.3化合物DPF2搭配DCC與Hg(II)之反應結果圖 71
5.4化合物DPF1搭配DCC與Hg(II)之反應結果圖 72
論文參考文獻:1. 劉秀雯,葉柏顯,李宗穎,蔡鴻義,「低血鉀症與高血鉀症」,藥學雜誌電子報2009年12月,101期。
2. Ha Na Kim, Wen Xiu Ren, Jong Seung Kim and Juyoung Yoon, “Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions”, Chemical Society Reviews, 2012, 3210–3244.
3. 行政院環境保護署土壤及地下水污染整治基金會管理會,「地下水污染物監測、管制標準」,土壤及地下水汙染整治網,2015年1月。
4. Lei Zhu and Eric V. Anslyn, “Signal Amplification by Allosteric Catalysis” Angewandte Chemie International Edition, 2006, 1190–1196.
5. Lee, Dong-Nam, Gun-Joong Kim and Hae-Jo Kim. "A Fluorescent coumarinylalkyne probe for the selective detection of mercury (II) ion in water." Tetrahedron Letters, 2009, 4766-4768.
6. Fengling Song, Shuji Watanabe, Paul E. Floreancig and Kazunori Koide, "Oxidation-resistant fluorogenic probe for mercury based on alkyne oxymercuration." Journal of the American Chemical Society, 2008, 16460-16461.
7. Wei Jiang, Qingquan Fu, Hongyou Fan and Wei Wang, "An NBD fluorophore-based sensitive and selective fluorescent probe for zinc ion." Chemical Communications, 2007, 259-261.
8. Huang, Sheng-Tung, Yi-Xiang Peng and Kun-Li Wang. "Synthesis of a new long-wavelength latent fluorimetric indicator for analytes determination in the DT-Diaphorase coupling dehydrogenase assay system." Biosensors and Bioelectronics, 2008, 1793-1798.
9. United States Environmental Protection Agency, EPA 816-F-09-004, 2009.
10. 李珠,「感應耦合電漿質譜儀在材料分析的應用」,工業材料雜誌92年9月,201期,第117-122頁。
11. A. Da̧browski, Z. Hubicki, P. Podkościelny, E. Robens, “Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods”, Chemosphere, 2004, 91-106.
12. Yoko Miyake, Humika Togashi, Mitsuru Tashiro, Hiroshi Yamaguchi, Shuji Oda, Megumi Kudo, Yoshiyuki Tanaka, Yoshinori Kondo, Ryuichi Sawa, Takashi Fujimoto, Tomoya Machinami and Akira Ono, "MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes." Journal of the American Chemical Society, 2006, 2172-2173.
13. Park, Ki Soo and Hyun Gyu Park, "Technological applications arising from the interactions of DNA bases with metal ions." Current opinion in biotechnology, 2014, 17-24.
14. Jianjun Du, Zhenkuan Wang, Jiangli Fan and Xiaojun Peng, "Gold nanoparticle-based colorimetric detection of mercury ion via coordination chemistry." Sensors and Actuators B: Chemical, 2015, 481-486.
15. Shouhai Yang, Wenge Yang, Qirun Guo, Tuan Zhang, Keyi Wu and Yonghong Hu, "A highly selective and ratiometric fluorescence probe for the detection of Hg2+ and pH change based on coumarin in aqueous solution." Tetrahedron, 2014, 8914-8918.
16. M. Kutscheroff, "Ueber eine neue Methode direkter Addition von Wasser (Hydratation) a die Kohlenwasserstoffe der Acetylenreihe." Berichte der deutschen chemischen Gesellschaft, 1881, 1540-1542.
17. Ruixing Zhang, Xiaoyu Zhuang, Shu Liu, Fengrui Song and Zhiqiang Liua, "Novel electrospray ionization-tandem mass spectrometry strategy for monitoring mercury (ii) ion based on the competing system of mercury specific DNA and glutathione to mercury (ii) ion." Analytical Methods, 2014, 5746-5752.
18. Bingying Jiang, Lan Yu, Fangzhen Li and Jiaqing Xie, "A dual functional electrochemical “on–off” switch sensor for the detection of mercury (II) and melamine." Sensors and Actuators B: Chemical, 2015, 446-450.
19. Ling Chen, Tingting Lou, Chunwei Yu, Qi Kang and Lingxin Chen, "N-1-(2-Mercaptoethyl) thymine modification of gold nanoparticles: a highly selective and sensitive colorimetric chemosensor for Hg2+." Analyst, 2011, 4770-4773.
20. Sener, Gulsu, Lokman Uzun, and Adil Denizli, "Lysine-promoted colorimetric response of gold nanoparticles: A simple assay for ultrasensitive mercury (II) detection." Analytical chemistry, 2013, 514-520.
21. Yi Deng, Xin Wang, Feng Xue, Lei Zheng, Jian Liu, Feng Yan, Fan Xia and Wei Chena, "Ultrasensitive and rapid screening of mercury (II) ions by dual labeling colorimetric method in aqueous samples and applications in mercury-poisoned animal tissues." Analytica chimica acta, 2015, 45-52.
22. Nan Ding, Hong Zhao, Wenbo Peng, Yujian He, Ying Zhou, Longfei Yuan and Yuanxun Zhang, "A simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection." Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 161-167.
23. Shin Ando, and Kazunori Koide. "Development and applications of fluorogenic probes for mercury (II) based on vinyl ether oxymercuration." Journal of the American Chemical Society, 2011, 2556-2566.
24. Wan, Xuejuan, Tao Liu, and Shiyong Liu. "Thermoresponsive core cross-linked micelles for selective ratiometric fluorescent detection of Hg2+ ions." Langmuir, 2011, 4082-4090.
25. Christopher A. Blencowe, Andrew T. Russell, Francesca Greco, Wayne Hayes and David W. Thornthwaite, "Self-immolative linkers in polymeric delivery systems." Polymer Chemistry, 2011, 773-790.
26. Soon Young Kim and Jong-In Hong, “Chromogenic and Fluorescent Chemodosimeter for Detection of Fluoride in Aqueous Solution”, Organic letters, 2007, 3109-3112.
27. Perry‐Feigenbaum, Rotem, Eran Sella, and Doron Shabat. "Autoinductive exponential signal amplification: A diagnostic probe for direct detection of fluoride." Chemistry-A European Journal, 2011, 12123-12128.
28. Scrimin, Paolo, and Leonard J. Prins. "Sensing through signal amplification." Chemical Society Reviews, 2011, 4488-4505.
29. Gu, Jiun-An, Veerappan Mani, and Sheng-Tung Huang. "Design and synthesis of ultrasensitive off–on fluoride detecting fluorescence probe via autoinductive signal amplification." Analyst, 2015, 346-352.
30. Maciej Adamczyk, Michael Cornwell, Jeff Huff, Sushil Rege and Tata Venkata S. Rao, "Novel 7-hydroxycoumarin based fluorescent labels." Bioorganic & Medicinal Chemistry Letters, 1997, 1985-1988.
31. Matthew S. Baker and Scott T. Phillips, "A two-component small molecule system for activity-based detection and signal amplification: Application to the visual detection of threshold levels of Pd (II)." Journal of the American Chemical Society, 2011, 5170-5173.
32. Jiun-An Gu, Yu-Jen Lin, Yu-Ming Chia, Hsin-Yi Lin and Sheng-Tung Huang, "Colorimetric and bare-eye determination of fluoride using gold nanoparticle agglomeration probes." Microchimica Acta, 2013, 801-806.
33. Kyung-Sik Lee, Hae-Jo Kim, Gun-Hee Kim, Injae Shin and Jong-In Hong, "Fluorescent chemodosimeter for selective detection of cyanide in water." Organic letters, 2008, 49-51.
論文全文使用權限:不同意授權