現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:高敏感長波長比色螢光分子探針檢測半胱胺酸和同半胱胺酸 [以論文名稱查詢館藏系統]
論文英文名稱:A highly sensitive colorimetric long-wavelength fluorescence sensor for the determination of cysteine and homocysteine [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程與生物科技系生化與生醫工程碩士班
畢業學年度:103
畢業學期:第二學期
中文姓名:陳信銘
英文姓名:Sin-Ming Chen
研究生學號:102688002
學位類別:碩士
語文別:中文
口試日期:2015/06/23
指導教授中文名:黃聲東
指導教授英文名:Sheng-Tung Huang
口試委員中文名:郭憲壽;林俊茂
中文關鍵詞:隱藏式長波長螢光分子探針半胱胺酸同半胱胺酸
英文關鍵詞:long-wavelength fluorescent probecysteinehomocysteine
論文中文摘要:我們設計合成一種新型隱藏式長波長螢光分子探針BBCH,可以用來檢測生理上具有重要意義的半胱胺酸和同半胱胺酸。隱藏式螢光分子探針主要運用化學反應的方式修飾將螢光分子改質,使螢光分子的螢光消失或強度下降,並能藉由化學反應的催化進而螢光釋放。半胱胺酸和同半胱胺酸上的硫醇基與BBCH進行自發性不可逆的環化反應後,釋放出長波長螢光劑(BCH)及副產物(5-oxothiomorpholine-3-carboxylic acid),而螢光劑(BCH)激發後,會產生趨近於紅外光波長之595nm的螢光訊號。因此,我們證實新型隱藏式螢光分子探針BBCH對不同的濃度的半胱胺酸和同半胱胺酸反應後,產生螢光訊號具有線性關係,因此可推算出半胱胺酸的偵測極限為0.87μM及同半胱胺酸的偵測極限為1.9μM。再與其他19種胺基酸進行選擇性測試,證實BBCH探針對半胱胺酸具有良好的選擇性,且BBCH探針與半胱胺酸反應後,具有裸眼辨識的效果。希望成為生物檢測器並應用於未來臨床疾病的觀察。
論文英文摘要:We have designed and synthesized a new long-wavelength fluorescent probe BBCH for the sensitive determination of physiologically important thiols, cysteine and homocysteine. The fluorogenic chemical transformation of BBCH triggered by thiols is a spontaneous and irreversible process at physiological temperature. The fluorescence probe BBCH is non-fluorescent. In the presence of either cysteine or homocysteine, BBCH undergoes a SN2 reaction with concomitant release of long wavelength fluorogenic BCH along with the formation 5-oxothiomorpholine-3-carboxylic acid as byproduct. The fluorescence changes were linearly dependent with the concentration of cysteine and homocysteine. To detect cysteine, the described fluorescence sensor presents linear range of 1μM to 10μM and detection limit of 0.87μM. To detect homocysteine, the described fluorescence sensor presents linear range of 1μM to 10μM and detection limit of 1.90μM. The fluorescence signal of BBCH is rapid and specific to cysteine. The probe exhibits excellent selectivity to detect cysteine over 19 other amino acids. Moreover, practical applicability of the described sensor has been assessed in biological and pharmaceutical samples.
論文目次:摘要 ii
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xi
附錄 xii
第一章 前言 1
第二章 文獻探討 2
2.1半胱胺酸 2
2.2同半胱胺酸 3
2.2.1同半胱胺酸的代謝 4
2.3 Detection of thiol 整理 5
2.4螢光原理 6
2.5隱藏式螢光分子探針 8
2.5.1 Cleavage of disulfide by thiols 8
2.5.2 Michael addition 9
2.5.3 Cyclization 10
2.5.4 Cleavage of sulfonamide and sulfonate ester by thiols 10
2.5.5 BCC determination by thiols 11
2.5.6 Metal complex related 11
2.6生物組織中發光物質 12
2.7 單角度動態光散射儀(Single angle of dynamic static light scattering) 14
第三章 實驗動機與目的 15
3.1隱藏式螢光分子探針 15
3.2隱藏式螢光分子探針設計概念 15
3.2.1 Cyclization 16
3.3螢光劑的選擇 17
3.4研究動機 18
第四章 實驗方法與設備 19
4.1儀器與藥品 19
4.1.1實驗儀器 19
4.1.2實驗藥品 20
4.2實驗合成 22
4.3條件最佳化的選擇 27
4.4即時觀察實驗方法 27
4.4探討粒徑大小實驗方法 30
4.5 BBCH對Thiols即時觀察實驗方法 31
4.6 BBCH對Cys及Hcy的檢量線實驗方法 31
4.7 BBCH對其他胺基酸選擇性實驗方法 33
4.8 BBCH對其他胺基酸實驗照片測試方法 33
4.9 BBCH對真實樣品檢測實驗測試方法 34
第五章 結果與討論 35
5.1 Latent fluorophore BBCH、CBCH、AOC-BCH 35
5.2條件最佳化討論 36
5.3水解速率探討粒徑大小 43
5.4 BBCH對Thiols即時觀察 45
5.5 BBCH對Cys及Hcy的檢量線測試 46
5.6 BBCH對其他胺基酸測試 49
5.7 BBCH對其他胺基酸實驗照片測試 50
5.8 BBCH對真實樣品檢測實驗測試 51
第六章 結論 52
參考文獻 53
附錄 58
論文參考文獻:[1] Slivka A, Cohen G. Brain ischemia markedly elevates levels of the neurotoxic amino acid, cysteine. Brain Res. 608 (1993) 33-37.
[2] Karlsen RL, Grofova I, Malthe-Sørenssen D, Fonnum F. Morphological changes in rat brain induced by L-cysteine injection in newborn animals. Brain Res. 208 (1981) 167-180.
[3] Pean AR, Parsons RB, Waring RH, Williams AC, Ramsden DB. Toxicity of sulphur-containing compounds to neuronal cell lines. J. Neurol. Sci. (1995) 107-108.
[4] Wang XF, Max S. Cynader. Pyruvate released by astrocytes protects neurons from copper-catalyzed cysteine neurotoxicity. J. Neurol. sci. 21 (2001) 3322–3331.
[5] Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, Wilson PWF, Wolf PA. Plasma homocysteine as a risk factor for dementia and alzheimer’s disease. N. Engl. J. Med. (2002) 346.
[6] Lehmann A, Hagberg H, Orwar O, Sandberg M. Cysteine sulphinate and cysteate:mediators of cysteine toxicity in the neonatal rat brain? Eur. J. Neurosci. 5 (1993) 1398-1412.
[7] Schurr A, West CA, Heine MF, Rigor BM. The neurotoxicity of sulfur-containing amino acids in energy-deprived rat hippocampal slices. Brain Res. 601 (1993) 317-320.
[8] Slivka A , Cohen G. Brain ischemia markedly levels of the neurotoxic amino acid,cysteine. Brain Res. 608 (1993) 33-37.
[9] Shahrokhian S, Lead phthalocyanine as a selective carrier for preparationof a cysteine-selective electrode. Anal. Chem. 73 (2001) 5972–5978.
[10] Carmel R, Jacobsen DW. Homocysteine in health and disease: Cambridge University Press: Cambridge, U.K. 2001.
[11] Lentz SR, Haynes WG. HomocysteineIs it a clinically important cardiovascular risk factor? Cleveland Clin. J. Med. 71 (2004) 729-734.
[12] Kang SS, Wong PW, Malinow MR. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Annu. Rev. Nutr. 12 (1992) 279-298.
[13] McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis., Am. J. Pathol. 56 (1969) 111–128.
[14] Ueland PM, Homocysteine species as components of plasma redox thiol status. Clin. Chem. 41 (1995) 340-342.
[15] Winters RA, Zukowski J, Ercal N, Matthews RH, Spitz DR. Analysis of glutathione, glutathione disulfide,cysteine, homocysteine, and other biological thiols by high-performance liquid chromatography following derivatization by n-(1-pyrenyl)maleimide. Anal. Biochem. 227 (1995) 14-21.
[16] Lee PT, Lowinsohn D, Compton RG. The selective electrochemical detection of homocysteine in the presence of glutathione, cysteine, and ascorbic acid using carbon electrodes. Analyst 139 (2014) 3755-3762.
[17] 鍾嘉明,有機發光二極體成長條件與特性研究,中原大學應用物理研究所 碩學位論文,桃園中壢,92年
[18] Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110 (2010) 2620-2640.
[19] Ellman GL.Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82 (1959) 70-77.
[20] Jung HS, Han JH, Pradhan T, Kim S, Lee SW, Sessler JL, Kim TW, Kang C, Kim JS. A cysteine-selective fluorescent probe for the cellular detection of cysteine. Biomaterials 33 (2012) 945-953.
[21] Lee KS, Kim TK, Lee JH, Kim HJ, Hong JI. Fluorescence turn-on probe for homocysteine and cysteine in water. Chem. Commun. (2008) 6173-6175.
[22] Li M, Wu X, Wang Y, Li Y, Zhu W, James TD. A near-infrared colorimetric fluorescent chemodosimeter for the detection of glutathione in living cells. Chem. Commun. 50 (2014) 1751-1753.
[23] Huang ST, Ting KN, Wang KL. Development of a long-wavelength fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols. Anal. chimi. acta. 620 (2008) 120–126.
[24] Gu K¸ Ozyurek M, Gungor N, Baki S. Selective optical sensing of biothiols with Ellman’s reagent:5,5-Dithio-bis(2-nitrobenzoic acid)-modified gold nanoparticles., Anal. Chimi. Acta 794 (2013) 90–98.
[25] Petit JM, Denis-Gay M, Ratinaud MH. Assessment of fluorochromes for cellular structure and function studies by flow cytometry. Mol. Biol. Cell. 78 (1993) 1-13.
[26] Wolfeis O. The fluorescence of organic natural products: Wiley, 1985
[27] Teale FWJ, Weber G. Ultraviolet fluorescence of the aromatic amino acids. Biochem. J. 65 (1957) 476–482.
[28] Waggoner A. Covalent labeling of proteins and nucleic acids with fluorophores. Methods Enzymol. 246 (1995) 362-373.
[29] Johnson I. Review: Fluorescent probes for living cells. Histochem. J. 30 (1998) 123-140.
[30] Boonacker E, Van Noorden CJ. Enzyme cytochemical techniques for metabolic mapping in living cells, with special reference to proteolysis. J. histochem. cytochem. 49 (2001) 1473.
[31] Beechem M, Brand L. Time-resolved fluorescence of proteins. Ann. Rev. Biochem. 54 (1985) 43-71.
[32] Marme N, Knemeyer JP, Wolfrum J, Sauer M. Highly sensitive protease assay using fluorescence quenching of peptide probes based on photoinduced electron transfer. Angew. Chem. 43 (2004) 3798 –3801.
[33] Zhang J, Campbell RE, Ting AY, Tsien RY. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. (2002) 906-918.
[34] G. Weber. Intramolecular transfer of electronic energy in dihydro diphosphopyridine nucleotide. Nature 180 (1957) 1409.
[35] B Valeur. Molecular fluorescence: principles and applications. 2002.
[36] Whitby LG. A new method for preparing flavin-adenine dinucleotide Biochem. J. 54 (1953) 437–442.
[37] Schaeffter T. Imaging modalities: principles and information content. Prog. Drug Res. 62 (2005) 15-81.
[38] Janssen YM, Houten BV, Borm PJ, Mossman BT. Cell and tissue responses to oxidative damage. Lab Invest. 69 (1993) 261-274.
[39] Hong KH, Lim SY, Yun MY, Lim JW, Woo JH, Kwon H, Kim HJ. Selective detection of cysteine over homocysteine and glutathione by a bis(bromoacetyl)fluorescein probe. Tet. Let. 54 (2013) 3003–3006.
[40] Xiao Y, Liu F, Qian X, Cui J. A new class of long-wavelength fluorophores: strong red fluorescence, convenient synthesis and easy derivation. Chem. Commun. (2005) 239-241.
[41] Choi MG, Hwang J, Moon JO, Sung J, Chang SK. Hydrazine-selective chromogenic and fluorogenic probe based on levulinated coumarin. Org. Lett. 13 (2011) 5260–5263.
[42] Eshghi H, Mirzaie N, Asoodeh A. Synthesis of fluorescein aromatic esters in the presence of P2O5/SiO2 as catalyst and their hydrolysis studies in the presence of lipase. Dyes Pigm. 89 (2011) 120-126.
[43] Nakata E, Nazumi Y, Yukimachi Y, Uto Y, Hori H, Morii T. Self-assembled fluorescent nanoprobe for the detection of fluoride ions in aqueous solutions. Bull. Chem. Soc. Jpn. 88 (2015) 327–329.
論文全文使用權限:不同意授權