現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:微型有機朗肯循環發電系統建立 [以論文名稱查詢館藏系統]
論文英文名稱:Development of micro-scale organic Rankine cycle for power generation [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:機電學院機電科技博士班
畢業學年度:103
畢業學期:第二學期
中文姓名:張仁傑
英文姓名:Jen-Chieh Chang
研究生學號:99669033
學位類別:博士
語文別:中文
口試日期:2015/07/07
指導教授中文名:洪祖全
指導教授英文名:Tzu-Chen Hung
口試委員中文名:白寶實;林昭仁;曾永信;林啟瑞;張始偉
中文關鍵詞:有機朗肯循環、渦卷式膨脹器、廢熱回收、計算流體力學
英文關鍵詞:Organic Rankine cycle, scroll expander, waste heat recovery, computational fluid dynamics
論文中文摘要:本文針對低溫熱源建立小型有機朗肯循環(Organic Rankine Cycle, ORC)發電系統,以達到廢熱回收與發電之效益。本論文主要分為兩階段進行實驗研究,主要研究工作與發現如下。
第一套ORC實驗迴路主要針對不同體積比之渦卷式膨脹器進行實驗運轉,並觀察膨脹器體積比對於系統性能之影響。第一套系統實驗亦應用計算流體力學軟體(Computational Fluid Dynamics, CFD)模擬渦卷式膨脹器以探討內部流場行為。模擬結果發現渦捲齒型會明顯影響渦卷腔體內壓力分佈。CFD模擬結果也發現提高體積比能改善膨脹器運轉效能。此外從CFD模擬結果中發現不適當的渦卷齒前端修正齒型亦會影響膨脹器內部壓力分佈。
本文以渦卷式膨脹器進行研究與測試。第一階段實驗測試分別以體積比2、3、4之渦卷式膨脹器進行實驗,發現使用體積比較大之渦卷膨脹器能有效地提升膨脹器與ORC系統效率。此外在以Vr2膨脹器實驗中,發現適量地在膨脹器添加冷凍油能有效地減少膨脹器之摩擦損失與提升等熵效率。在本研究中以體積比2之渦卷膨脹器測試結果得到以無油運轉下,最高膨脹器等熵效率為58.5 %;在膨脹器渦卷齒與軸承處加入適量冷凍油後,最高可將等熵效率提升至68.4 %。在第一階段實驗結果中,使用體積比4之渦卷膨脹器可達到最高系統效率9.439 %。此外,第一階段實驗也使用體積比4之膨脹器針對不同膨脹器入口過熱度進行測試,發現提高過熱度能提升膨脹器之等熵效率。
基於第一套ORC實驗迴路之研究經驗,在第二階段系統建立主要針對低成本、高耐用性與模組化機組設計。在不考慮自行研發渦卷式膨脹器的前提下,該ORC機組選用市售空調用渦捲式壓縮機改裝為膨脹器測試。經過長時間運轉測試後已可說明膨脹器皆可維持穩定的性能與耐用度。另外也應用可程式控制系統(Programmable Logic Control, PLC)撰寫程式並進行實機測試。由測試結果發現,系統控制邏輯與架構能夠滿足ORC系統的穩定運轉。
論文英文摘要:The thesis focuses on development of low-temperature micro-scale organic Rankine cycle (ORC) for power generation. This thesis devided as two main parts, the findings are given below.
First prototype focus on experimental test the scroll expander with different built-in volume ratio, the behavior of cycle performance with respect to different scroll expanders have been investigated. Computational Fluid Dynamic (CFD) technology is employed to identify the expansion behavior and phenomena for the scroll type expander. The simulated result found that the involute scroll wrap could significantly affect the pressure distribution in the scroll chamber. CFD simulation also indicates that the performance of the expander would be improved by the increase of built-in volume ratio. Inaddition, simulation result shows that the pressure distribution in the scroll chambers would affect by an inadequate tip scroll shape.
Scroll type expander is applied in the ORC system. In first prototype, the scroll expander with built-in volume ratio of 2, 3, 4, have been experimentally investigated. It is found that the expander and ORC efficiency could be effectively enhanced as the expander with bigger built-in volume ratio is applied in the ORC system. In addition, the friction loss and isentropic efficiency of the expander can be effectively improved as the working fluid is mixed with moderate concentration of lubricant. In this study, the expander with volume ratio of 2 has been tested, result shows that the maximum expander efficiency is 58.5 %; and the maximum efficiency of 68.4 % is obtained as the expander has been well-lubricated. In first prototype, as Vr4 expander is utilized, maximum cycle efficiency of 9.439 % is achieved. Furthermore, the effect of the superheating to the cycle performance is experimentally tested in first prototype, it observed that the expander efficiency can be increased as increasing superheating of the expander.
Basd on experimental experience of first prototype, second prototype mainly focuses on low cost, high durability and modulization design. In addition, the system controller based on PLC environment has been established in this prototype. It can be observed that the control logic and algorithm can satisfy the stable operation to the ORC system, and significantly enhance the system stability of the ORC.
論文目次:摘要...........................................i
Abstract....................................iii
誌謝...........................................v
目錄..........................................vi
圖目錄........................................ix
表目錄......................................xiii
第一章 緒論...................................1
1.1 前言...................................1
1.2 文獻回顧...............................6
1.2.1 工作流體...............................6
1.2.2 膨脹器.................................9
1.2.3 系統控制..............................13
1.3 本文架構..............................13
第二章 理論模式與數值方法.......................16
2.1 熱力學方程式...........................16
2.2 渦卷式膨脹器...........................19
2.3 數值模式..............................23
2.4 真實氣體模型...........................25
2.5 邊界條件..............................26
2.6 二維與三維模型驗證 .....................27
2.7 統御方程式............................28
2.8 網格靈敏度測試.........................29
第三章 實驗系統架設............................31
3.1 實驗系統與設備.........................31
3.2 幫浦..................................32
3.3 系統熱源與熱交換器 .....................36
3.4 膨脹器................................37
3.5 儲液槽與冷卻系統.......................40
3.6 發電機與負載系統.......................40
3.7 油幫浦................................41
3.8 冷凍油................................42
第四章 系統各項運轉條件之影響...................43
4.1 不準度分析............................43
4.2 實驗環路控制...........................43
4.3 實驗重現性............................41
4.4 潤滑油對膨脹器之影響....................43
4.5 渦卷齒型修正影響.......................47
4.6 體積比之影響...........................49
4.7 膨脹器出口壓力之影響....................51
4.8 次冷度之影響...........................55
4.9 過熱度之影響...........................57
4.10 管路損失影響...........................62
4.11 系統測試結果...........................63
4.11.1 Vr2與Vr3膨脹器實驗分析.................68
4.11.2 Vr4渦卷膨脹器實驗分析..................71
4.11.3 膨脹器選擇與評估.......................76
第五章 模組化系統建立...........................77
5.1 環路元件與配置.........................77
5.2 膨脹器................................81
5.3 控制系統..............................85
5.4 感應式發電機...........................88
5.5 系統測試結果...........................91
第六章 結論...................................98
第七章 未來工作...............................101
附錄 ....................................103
附錄A 冷媒幫浦改善說明 ....................103
附錄B 不凝結氣體排除........................105
附錄C 環路配件材料選擇......................106
參考文獻.....................................107
符號彙整.....................................114
論文著作.....................................116
作者簡歷.....................................117
論文參考文獻:1. U.S. DOE., Waste heat Recovery: Technology and Opportunities in U.S. Industry, 2008. http://www1.eere.energy.gov/manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.pdf
2 M. Bianchi and A. De Pascale, “Bottoming cycles for electric energy generation: Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources,” Applied Energy, Vol. 88, 2011, pp. 1500-1509.
3 P. Bombarda, C.M. Invernizzi, C. Pietra, “Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles,” Applied Thermal Engineering, Vol. 30, 2010, pp. 212-219.
4 U.S. Army Mobility R&D Center, “Organic Rankine cycle silent power plant, 1.5 kW, 28VDC,” 1975.
5 T. Yamamoto, T. Furuhata, N. Arai, K. Mori, “Design and testing of the organic rankine cycle,” Energy, Vol. 26, 2001, pp. 239-251.
6 經濟部能源局,國內能源消費(按部門別),http://web3.moeaboe.gov.tw/ecw/business/content/wHandMenuFile.ashx?menu_id=869.
7 經濟部能源局,能源報導,2014年9月刊,http://energymonthly.tier.org.tw/report/201409/10309.pdf
8 Scopus. http://www.scopus.com/
9 A. Schuster, S. Karellas, E. Kakaras, H. Spliethoff, “Energetic and economic investigation of Organic Rankine Cycle applications,” Applied Thermal Engineering, Vol. 29, 2009, pp. 1809-1817.
10 B. Peris, J. Nacarro-Esbri, F. Moles, A. Mota-Babiloni, “Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry,” Energy, Vol. 85, 2015, pp. 534-542.
11 T. C. Hung, “Waste heat recovery of organic Rankine cycle using dry fluids,” Energy Conversion and Management, Vol. 42, 2001, pp. 539-553.
12 T. C. Hung, T. Y. Shai, S. K. Wang, “A review of organic Rankine cycle (ORCs) for the recovery of low-temperature waste heat,” Energy, Vol. 22, 1997, pp. 661-667.
13 Y. Chen, P. Lundqvist, A. Johansson, P. Platell, “A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery,” Applied Thermal Engineering, Vol. 26, 2006, pp. 2142-2447.
14 A. Schuster, S. Karellas, R. Aumann, “Efficiency optimization potential in supercritical Organic Rankine Cycles,” Energy, Vol. 35, 2010, pp. 1033-1039.
15 H. Chen, D. Y. Goswami M. M. Rahman, E. K. Stefanakos, “A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low grade heat into power,” Energy, Vol. 35, 2011, pp. 549-555.
16 T. Guo, H. Wang, S. Zhang, “Comparative analysis of natural and conventional working fluids for use in transcritical Rankine cycle using low temperature geothermal source,” International Journal of Energy Research, Vol. 35, 2011, pp. 530-544.
17 S. Karellas, A. Schuster, “Supercritical fluid parameters in organic Rankine cycle applications,” International Journal of Thermodynamics, Vol. 11, 2008, pp. 101-108.
18 S. Karellas, A. Schuster, A. D. Leontaritis, “Influence of supercritical ORC parameters on plate heat exchanger design,” Applied Thermal Engineering, Vol. 33, 2011, pp. 70-76.
19 C. R. Kuo, S. W. Hsu, K. H. Chang, C. C. Wang, “Analysis of a 50kW organic Rankine cycle system,” Energy, Vol. 36, 2011, pp. 5877-5885.
20 T. C. Hung, S. K. Wang, C. H. Kuo, B. S. Pei, K. F. Tsai, “A study of organic working fluids on system efficiency of an ORC using low-grade energy sources,” Energy, Vol. 35, 2010, pp. 1403-1411.
21 P. J. Mago, L. M. Chamra, K. Srinivasan, C. Somayaji, “An examination of regenerative organic Rankine cycles using dry fluids,” Applied Thermal Engineering, Vol. 28, 2007, pp. 998-1007.
22 B. T. Liu, K. H. Chien, C. C. Wang, “Effect of working fluids on organic Rankine cycle for waste heat recovery,” Energy, Vol. 29, 2004, pp. 1207-1217.
23 I. H. Aljundi, “Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle,” Renewable Energy, Vol. 36, 2011 pp. 1196-1202.
24 V. Maizza, A. Maizza, “Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems,” Applied Thermal Engineering, Vol. 21, 2011, pp. 381-390.
25 O. Badr, S. D. Probert, P. W. O'Callaghan, “Selecting a working fluid for a Rankine cycle engine,” Applied Energy, Vol. 21, 1985, pp. 1-42.
26 C. He, C. Liu, H. Gao, H. Xie, Y. Li, S. Wi, H. Xu, “The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle,” Energy, Vol. 38, 2012, pp. 136-143.
27 J. P. Roy, M. K. Mishra, A. Misra, “Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle,” Energy, Vol. 35, 2010,pp. 5049-5062.
28 B. F. Tchanche, G. Papadakis, G. Lambrinos, A. Frangoudakis, “Fluid selection for a low-temperature solar organic Rankine cycle,” Applied Thermal Engineering, Vol. 29, 2009, pp. 2468-2476.
29 G. Qiu, H. Liu, S. Riffat, “Expanders for micro-CHP systems with organic Rankine cycle,” Applied Thermal Engineering, Vol. 31, 2011, pp. 3301-3307.
30 S. Quoilin, M. Van Den Broek, S. Declaye, P. Dewallef, V. Lemort, “Techno-economic survey of Organic Rankine cycle (ORC) systems,” Renewable and Sustainable Energy Reviews, Vol. 22, 2013, pp. 168-186.
31 C. M. Invernizzi, P. Iora, P. Silva, “Bottoming micro-Rankine cycles for micro-gas turbines,” Applied Thermal Engineering, Vol. 27, 2007, pp. 100-110.
32 S. K. Kang, “Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid,” Energy, Vol. 41, 2012, pp. 514-524.
33 V. M. Nguyen, P. S. Doherty, S. B. Riffat, “Development of a prototype low-temperature Rankine cycle electricity generation system,” Applied Thermal Engineering, Vol. 21, 2001, pp. 169-181.
34 G. Pei, J. Li, Y. Li, D. Wang, J. Ji, “Construction and dynamic test of a small scale organic rankine cycle,” Energy, Vol. 36, 2011, pp. 3215-3223.
35 Air Squard Inc. http://airsquared.com/products/expanders/e25h61n50
36 O. Badr, P. W. O'Callaghan, M. Hussein, S. D. Probert, “Multi vane expanders as prime movers for low-grade energy organic Rankine cycle engines,” Applied Energy, Vol. 16, 1984, pp. 129-146.
37 O. Badr, D. Probert, P. W. O'Callaghan, “Multi-vane expanders as prime movers in low grade energy engines,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 200, 1986, pp. 117-125.
38 O. Badr, P. W. O'Callaghan, S. D. Probert, “Multi vane expanders: Geometry and Vane Kinematics,” Applied Energy, Vol. 19, 1985, pp. 159-182.
39 O. Badr, S. D. Probert, P. O'Callaghan, “Performances of multi-vane expanders,” Applied Energy, Vol. 20, 1985, pp. 207-234.
40 O. Badr, S. D. Probert, P. W. O'Callaghan, “Influences of vane design and lubricant on a multi-vane expander's performance,” Applied Energy, Vol. 22, 1986, pp. 271-298.
41 O. Badr, D. Probert, P. W. O'Callaghan, “Selection of operating conditions and optimisation of design parameters for multi-vane expanders,” Applied Energy, Vol. 23, 1986, pp. 1-46.
42 G. Qiu, Y. Shao, J. Li, H. Liu, S. B. Riffat, “Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications,” Fuel, Vol. 96, 2012, pp. 374-382.
43 H. Wang, R. B. Peterson, T. Herron, “Experimental performance of a compliant scroll expander for an organic Rankine cycle,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 223, 2009, pp. 863-872.
44 R. B. Peterson, H. Wang, T. Herron, “Performance of a small-scale regenerative Rankine power cycle employing a scroll expander,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 222, 2008, pp. 271-282.
45 V. Lemort, S. Declaye, S. Quoilin, “Experimental characterization of a hermetic scroll expander for use in a micro-scale Rankine cycle,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 226, 2011, pp. 126-136.
46 V. Lemort, S. Quoilin, C. Cuevas, J. Lebrun, “Testing and modeling a scroll expander integrated into an Organic Rankine Cycle,” Applied Thermal Engineering, Vol. 29, 2009, pp. 3094-3102.
47 S. Quoilin, V. Lemort, J. Lebrun, “Experimental study and modeling of an Organic Rankine Cycle using scroll expander,” Applied Energy, Vol. 87, 2010, pp. 1260-1268.
48 G. Liu, Y. Zhao, L. Li, P. Shu, “Simulation and experiment research on wide ranging working process of scroll expander driven by compressed air,” Applied Thermal Engineering, Vol. 30, 2010, pp. 2073-2079.
49 S. Clemente, D. Micheli, M. Reini, R. Taccani, “Energy efficiency analysis of organic Rankine cycles with scroll expanders for cogenerative applications,” Applied Energy, Vol. 97, 2012, pp. 792–801.
50 D. Manolakos, G. Kosmadakis, S. Kyritsis, G. Papadakis, “Identification of behaviour and evaluation of performance of small scale, low-temperature Organic Rankine Cycle system coupled with a RO desalination unit,” Energy, Vol. 34, 2009. pp. 767-774.
51 N. Zheng, L. Zhao, X. D. Wang, Y. T. Tan, “Experimental verification of a rolling-piston expander that applied for low-temperature organic Rankine cycle,” Applied Energy, Vol. 112, 2013, pp. 1265-1274.
52 N. Zhou, X. Wang, Z. Chen, Z. Wang, “Experimental study on Organic Rankine Cycle for waster heat recovery from low-temperature flue gas,” Energy, Vol. 55, 2013, pp. 216-225.
53 S. Declaye, S. Quoilin, L. Guillaume, V. Lemort, “Experimental study an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid,” Energy, Vol. 55, 2013, pp. 173-183.
54 E. Yun, D. Kim, S. Y. Yoon, C. Kim, “Experimental investigation of an organic Rankine cycle with multiple expanders used in parallel,” Applied Energy, Vol. 145, 2015, pp. 246-254.
55 T. Saitoh, N. Yamada, S. Wakashima, “Solar Rankine cycle using scroll expander,” Journal of Environment and Engineering, Vol. 2, 2007, pp. 708-719.
56 R. Bracco, S. Clemente, D. Micheli, M. Reini, “Experimental tests and modelization of a domestic-scale ORC (Organic Rankine Cycle),” Energy, Vol. 58, 2013, pp. 107-116.
57 M. Li, J. Wang, W. He, L. Gao, B. Wang, S. Ma, Y. Dai, “Construction and preliminary test of a low-temperature regenerative Organic Rankine Cycle (ORC) using R123,” Renewable Energy, Vol. 57, 2013, pp. 216-222.
58 J. Li, G. Pei, Y. Li, D. Wang, J. Ji, “Energetic exergetic investigation of an organic Rankine cycle at different heat source temperatures,” Energy, Vol. 38, 2012, pp. 85-95.
59 M. Farrokhi, S. H. Noie, A. A. Akbarzadeh, “Preliminary experimental investigation of a natural gas-fired ORC-based micro-CHP system for residential buildings,” Applied Thermal Engineering, Vol. 69, 2014, pp. 221-229.
60 D. Wei, X. Ku, Z. Lu, J. Gu, “Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery,” Applied Thermal Engineering, Vol. 28, 8008, pp. 1216-1224.
61 S. Quoilin, R. Aumann, A. Grill, A. Schuster, V. Lemort, H. Spliethoff, “Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles,” Applied Energy, Vol. 88, 2011, pp. 2183-2190.
62 J. Sun, W. Li, “Operation optimization of an organic rankine cycle (ORC) heat recovery power plant,” Applied Thermal Engineering, Vol. 31, 2011, pp. 2032-2041.
63 J. Zhang, W. Zhang, G. Hou, F. Fang, “Dynamic modeling and multivariable control of organic Rankine cycles in waste heat utilizing processes,” Computers and Mathematics with Applications, Vol. 64, 2012, pp. 908-921.
64 Y. R. Lee, C. R. Kuo, C. C. Wang, “Transient response of a 50 kW organic Rankine cycle system,” Energy, Vol. 48, 2012, pp. 532-538.
65 B. Wang, X. Li, W. Shi, “A general geometrical model of scroll compressors based on discretional initial angles of involute,” International Journal of Refrigeration, Vol. 28, 2005, pp. 958-966.
66 B. E. Launder, D. B. Spalding, “Lectures in Mathematical Models of Turbulence,” Academic Press, England, 1972.
67 B. E. Launder, D. B. Spalding, “The numerical computation of turbulent flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, 1974, pp. 269-289.
68 M. M. Cui, “Comparative study of the impact of the dummy port in a scroll compressor,” International Journal of Refrigeration, Vol. 30, 2007, pp. 912-925.
69 K. T. Ooi, J. Zhu, Convective heat transfer in a scroll compressor chamber: a 2-D simulation,” International Journal of Thermal Sciences, Vol. 43, 2004, pp. 677-688.
70 M. M. Cui, “Numerical study of unsteady flows in a scroll compressor,” Journal of Fluids Engineering, Vol. 128, 2006, pp. 947-955.
71 E. W. Lemmon, M. O. Mclinden, M. L. Huber, “NIST standard reference database, reference fluid thermodynamic and transport properties-REFPROP, version 9.0. National Institute of Standard and Technology, Standard Reference Data Program, Gaithersburg,” 2007.
72 M. H. Hablanian, Design and performance of oil-free pumps,” Vacuum, Vol. 41, 1990, pp. 1814-1818.
73 R. Figliola, D. Beasley, “Theory and Design for Mechanical Measurements, Fifth edition,” John Wiley and Sons, New York, 2011.
74 H. Taniguchi, K. Kudo, W. H. Giedt, I. Park, S. Kumazawa, “Analytical and experimental investigation of two-phase flow screw expanders for power generation,” Journal of Engineering for Gas Turbine and Power, Vol. 110, 1988, pp. 628-635.
75 Emerson Climate Technology. http://www.emersonclimate.com/en-us/brands/Pages/copeland.aspx
76 Taiwan Hitachi Co. Ltd. http://www.taiwan-hitachi.com.tw/technique/technique-4
.aspx?t_id=5&id=12
77 Theodore Wildi. Electrical machines, drives, and power systems. Fifth edition, Prentice Hall, 2002.
78 Danijel Anciger. Numerische simulation der fluid-struktur-interaktion uidgesteuerter ventile in oszillierenden verdrängerpumpen. Ph.D. thesis, Technische Universität München Institut für Energietechnik, Germany, 2012.
79 Honeywell Blowing Agents. http://www.honeywell-blowingagents.com/?document
=honeywell-enovate-245fa-technical-brochure&download=1
論文全文使用權限:同意授權於2018-07-14起公開