現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:硝基還原酶螢光探針的合成路徑探討 [以論文名稱查詢館藏系統]
論文英文名稱:Exploration of synthetic routes for Nitroreductase fluorescent probe [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:生化與生醫工程研究所
畢業學年度:102
出版年度:103
中文姓名:王辰安
英文姓名:Chen-an Wang
研究生學號:100688023
學位類別:碩士
語文別:中文
口試日期:2014-01-22
論文頁數:55
指導教授中文名:黃聲東
口試委員中文名:郭憲壽;汪昆立
中文關鍵詞:長波長螢光探針硝基還原酶
英文關鍵詞:long-wavelength probeNitroreductase
論文中文摘要:  硝基還原酶(NTR)是細菌中一種已知的黃素酶,可以催化硝基芳香化合物形成胺基芳香化合物的還原反應,硝基還原酶被廣泛使用生物醫藥、抗菌劑等,也可以應用在檢測含硝基芳香化合物的環境汙染物。檢測硝基還原酶的方法很多,常見的是利用螢光分子探針,但多數螢光探針是溶解性較差,因此設計一個溶解性較好的新隱藏式螢光探針NBF-L來即時偵測硝基還原酶的活性,隱藏式螢光探針在未活化可以穩定存在,僅在特一的化學反應有強烈的螢光釋出,且為不可逆的反應,但是在合成隱藏式螢光探針NBF-L的過程中,結果不如預期,從此進行研究探討。
論文英文摘要:Nitroreductase (NTR) is a flavoenzyme with β-nicotinamide adenine dinucleotide (NADH) or β-nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor. NTR catalyzes the reduction of nitro compound to correspond in amine. The use of fluorescent probes assists real-time detection of NTR for hypoxia. We prepare a new long-wavelength latent fluorogenic probe, NBF-L, for the monitoring NRT activities. The fluorogenic probes are stable that unmask their intense fluorescence only by a user-designated chemical reaction, and they are especially useful tools for basic research in the biological sciences. The fluorogenic chemical transformation of NBF-L triggered by NRT in the presence of NADH is through a series of tandem reaction which are irreversible in aqueous media. But in the synthesis of latent fluorescent probes NBF-L have some problems and discuss these problems.
論文目次:中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
附錄目錄 ix
第一章 序論 1
1.1前言 1
1.2硝基還原酶 (nitroreductase) 2
1.3隱藏式螢光分子探針 5
1.4實驗目的與動機 9
第二章 實驗設備與方法 13
2.1實驗儀器 13
2.2實驗藥品 13
2.3實驗合成 15
2.3.1 NBF-L合成 15
2.3.2 NBF-S合成 18
2.3.3 NBF-M合成 20
2.3.4合成coumarin螢光劑 21
第三章 結果與討論 23
3.1合成探討 23
3.1.1 NBF-L 23
3.1.2 NBF-S 29
3.1.3 NBF-M 35
第四章 結論 37
參考文獻 38
附錄 42
論文參考文獻:1. Villanueva, J. R., The Purification of a Nitro-Reductase of Nocardia V. J Biol Chem 1964, 239, 773-6.
2. Whiteway, J.; Koziarz, P.; Veall, J.; Sandhu, N.; Kumar, P.; Hoecher, B.; Lambert, I. B., Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli. J Bacteriol 1998, 180 (21), 5529-39.
3. Nillius, D.; Muller, J.; Muller, N., Nitroreductase (GlNR1) increases susceptibility of Giardia lamblia and Escherichia coli to nitro drugs. J Antimicrob Chemother 2011, 66 (5), 1029-35.
4. Bryant, C.; DeLuca, M., Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. Journal of Biological Chemistry 1991, 266 (7), 4119-25.
5. Mendez-Vilas, A., Eds. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Formatex Research Center, Spain, 2010.
6. Brown, J. M.; Wilson, W. R., Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004, 4 (6), 437-47.
7. Engleberg, N. Cary; Dermody, Terence S., Schaechter's Mechanisms of Microbial Disease, Lippincott Williams & Wilkins, U.S.A., 2007.
8. Curado, S.; Stainier, D. Y.; Anderson, R. M., Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nature protocols 2008, 3 (6), 948-54.
9. Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 2010, 110 (5), 2620-40.
10. Schaeffter, T., Imaging modalities: principles and information content. Prog Drug Res 2005, 62, 15-81.
11. Janssen, Y. M.; Van Houten, B.; Borm, P. J.; Mossman, B. T., Cell and tissue responses to oxidative damage. Lab Invest 1993, 69 (3), 261-74.
12. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307 (5709), 538-44.
13. Hama, Y.; Urano, Y.; Koyama, Y.; Bernardo, M.; Choyke, P. L.; Kobayashi, H., A comparison of the emission efficiency of four common green fluorescence dyes after internalization into cancer cells. Bioconjug Chem 2006, 17 (6), 1426-31.
14. Longmire, M. R.; Ogawa, M.; Hama, Y.; Kosaka, N.; Regino, C. A.; Choyke, P. L.; Kobayashi, H., Determination of optimal rhodamine fluorophore for in vivo optical imaging. Bioconjug Chem 2008, 19 (8), 1735-42.
15. Vogel, S. S.; Thaler, C.; Koushik, S. V., Fanciful FRET. Sci STKE 2006, 18 (331).
16. Kamiya, M.; Kobayashi, H.; Hama, Y.; Koyama, Y.; Bernardo, M.; Nagano, T.; Choyke, P. L.; Urano, Y., An enzymatically activated fluorescence probe for targeted tumor imaging. J Am Chem Soc 2007, 129 (13), 3918-29.
17. Shi, Y.; Zhang, S.; Zhang, X., A novel near-infrared fluorescent probe for selectively sensing nitroreductase (NTR) in an aqueous medium. The Analyst 2013, 138 (7), 1952.
18. Li, Z.; Li, X.; Gao, X.; Zhang, Y.; Shi, W.; Ma, H., Nitroreductase detection and hypoxic tumor cell imaging by a designed sensitive and selective fluorescent probe, 7-[(5-nitrofuran-2-yl)methoxy]-3H-phenoxazin-3-one. Analytical chemistry 2013, 85 (8), 3926-32.
19. Huang, H. C.; Wang, K. L.; Huang, S. T.; Lin, H. Y.; Lin, C. M., Development of a sensitive long-wavelength fluorogenic probe for nitroreductase: a new fluorimetric indictor for analyte determination by dehydrogenase-coupled biosensors. Biosensors & bioelectronics 2011, 26 (8), 3511-6.
20. Shabat, D.; Amir, R. J.; Gopin, A.; Pessah, N.; Shamis, M., Chemical adaptor systems. Chemistry 2004, 10 (11), 2626-34.
21. Schmid, K. M.; Jensen, L.; Phillips, S. T., A self-immolative spacer that enables tunable controlled release of phenols under neutral conditions. The Journal of organic chemistry 2012, 77 (9), 4363-74.
22. Huang, S. T.; Peng, Y. X.; Wang, K. L., Synthesis of a new long-wavelength latent fluorimetric indicator for analytes determination in the DT-Diaphorase coupling dehydrogenase assay system. Biosensors & bioelectronics 2008, 23 (12), 1793-8.
23. Standley, E. A.; Jamison, T. F., Simplifying nickel(0) catalysis: an air-stable nickel precatalyst for the internally selective benzylation of terminal alkenes. J Am Chem Soc 2013, 135 (4), 1585-92.
24. Fabbrini, G.; Ricco, R.; Menna, E.; Maggini, M.; Amendola, V.; Garbin, M.; Villano, M.; Meneghetti, M., Sequential multiphoton absorption enhancement induced by zinc complexation in functionalized distyrylbenzene analogs. Physical chemistry chemical physics : PCCP 2007, 9 (5), 616-21.
25. Reddy, M. B. M.; Pasha, M. A., Cs2CO3Catalyzed Rapid and Efficient Conversion of Amines into Sulfonamides; Alcohols and Phenols into Sulfonic Esters. Phosphorus, Sulfur, and Silicon and the Related Elements 2011, 186 (9), 1867-1875.
26. Wolfbeis, O. S.; Koller, E.; Hoghmuth, P., The Unusually Strong Effect of a 4-Cyano Group upon Electronic Spectra and Dissociation Constants of 3-Substituted 7-Hydroxycoumarin. Bulletin of the Chemical Society of Japan 1985, 58 (2), 731-734.
27. Yeung, K.; Schmid, K. M.; Phillips, S. T., A thermally-stable enzyme detection assay that amplifies signal autonomously in water without assistance from biological reagents. Chemical Communications 2013, 49 (4), 394-396.
28. Jyothish, K.; Wang, Q.; Zhang, W., Highly Active Multidentate Alkyne Metathesis Catalysts: Ligand-Activity Relationship and Their Applications in Efficient Synthesis of Porphyrin-Based Aryleneethynylene Polymers. Advanced Synthesis & Catalysis 2012, 354 (11-12), 2073-2078.
論文全文使用權限:同意授權於2014-02-10起公開