現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:渦卷膨脹器於有機朗肯循環之實驗探討與數值分析 [以論文名稱查詢館藏系統]
論文英文名稱:Experimental investigation and numerical analysis of scroll expander for the application in organic Rankine cycles [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:機電整合研究所
畢業學年度:102
出版年度:103
中文姓名:張兆偉
英文姓名:Chao-Wei Chang
研究生學號:101408002
學位類別:碩士
語文別:中文
口試日期:2014-01-20
論文頁數:84
指導教授中文名:洪祖全
指導教授英文名:Tzu-Chen Hung
口試委員中文名:曾永信;王琅琛;白寶實
口試委員英文名:Yung-Shin Tseng
中文關鍵詞:有機朗肯循環渦卷膨脹器真實氣體CFD動網格技術
英文關鍵詞:Organic Rankine cycleScroll expanderreal gasCFDDynamic mesh
論文中文摘要:本研究主要探討渦卷膨脹器應用於有機朗肯循環(Organic Rankine Cycle, ORC)的性能及匹配性分析,並利用CFD技術探討其內部流場行為;其研究方法主要分為實驗及數值模擬。實驗分為三階段,第一階段將體積比2的渦卷膨脹器於ORC中做各項機械摩擦測試、內部洩漏測試,並利用膨脹器效率為指標探討各項損失對膨脹器性能之影響;第二階段實驗使用入口過熱度做為控制變數,使用Vr_2與Vr_4之渦卷膨脹器進行實驗,其膨脹器效率隨系統過熱度增加而上升,並且發現最佳的過熱操作溫度為12?C;第三階段的實驗,使用Vr_3的渦卷膨脹器進行出口壓力對性能的影響,發現出口壓力愈高時其效率愈佳;最後利用三種不同Vr的渦卷膨脹器於ORC系統在不同膨脹器出入口之間的壓力差與膨脹器轉速進行性能測試,目前測得膨脹器最高效率為79%。在CFD模擬部分與實驗值驗證後,首先以壓力分佈圖探討渦卷膨脹器內部行為與現象。發現在Vr_2的膨脹器中,存在壓力不平衡的現象;另外在同樣壓力差下,愈高體積比的渦卷膨脹器於膨脹過程中,壓力下降的趨勢會愈來愈高。第二階段使用R134a與R245fa作為工作流體,以Vr_4的渦卷膨脹器作比較,發現在使用R134a時可得到較高的效率及輸出功率,但是在膨脹器出入口之壓力差不夠時會出現過膨脹現象(Over expansion),最後更改體積變化率探討在相同體積比與吸氣體積對膨脹器之影響,其膨脹器效率隨體積變化率增大而變小,並且由壓力分佈圖得知,愈高的體積變化率使得壓力分佈趨勢會下降的愈快。
論文英文摘要:The present study mainly investigates the performance of scroll expander and its being applied in the organic Rankine cycle (ORC). Experiments using ORC loop to test and investigate the performances of the scroll expanders and the cycle have been conducted. CFD (Computational Fluid Dynamics) simulations have been also implemented to get insight of the behavior and the phenomena during expansion process.
In the experiment, an expander with built-in volume ratio (Vr) of 2 has first of all been used to implement the tests of mechanical friction and interior leakage in order to understand the influences in efficiency. Secondly, both Vr_2 and Vr_4 expanders were used to conduct the influence of the superheating at the inlet. The results indicate the optimal expander efficiency exists at around 12?C higher than the saturated temperature. Thirdly, experiment measurements by varying the outlet pressure using Vr_3 scroll expander were performed. Results indicated that higher expander outlet pressure results in higher expander efficiency. At last, Vr_2, Vr_3 and Vr_4 expanders were installed in ORC loop to conduct the influence of pressure difference between inlet and outlet, and the rotating speed of expander. So far, a maximum expander efficiency of 79% has been found.
In CFD simulations, verifications by the comparison between the experiment data and CFD simulation results have been completed. P-V(θ) diagram indicates the internal flow behavior and points out that the expanders with higher built-in volume ratio induces greater pressure drop from inlet to outlet. An unbalance phenomenon in pressure exists in the expansion chamber for Vr2 scroll expander. Secondly, Vr4 scroll expander was used to compare the performance when R134a and R245fa were employed as working fluid. The results show that the use of R134a has higher efficiency and power output. However, the phenomena of over-expansion might happen if the pressure difference between inlet and outlet is too small. Finally, under the conditions of specific built-in volume ratio and suction volume, the study indicates that the increase in the rate of volume change during expansion process results in the decrease in expander efficiency.
論文目次:摘 要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1. 前言 1
1.2. 文獻回顧 4
1.3. 研究動機與目的 9
1.4. 研究流程圖 10
第二章 理論分析 11
2.1 渦卷線型方程式與腔體計算 11
2.2 渦卷膨脹器於ORC系統之性能計算 14
第三章 實驗方法 17
3.1 ORC系統實驗及設備 17
3.2 膨脹器之規格與改裝 19
第四章 數值方法 22
4.1 物理模型 22
4.2 統御方程式 22
4.3 PISO演算法 24
4.4 真實氣體模型 25
4.5 動網格技術 26
4.6 鬆弛因子與收斂準則 26
4.7 各項驗證 28
4.7.1 壁面熱傳驗證 28
4.7.2 二維與三維模型驗證 29
4.7.3 ORC實驗值驗證 30
第五章 結果與討論 34
5.1 渦卷膨脹器主要損失 34
5.2 過熱度對渦卷膨脹器之影響 37
5.3 膨脹器出口壓力對其性能影響 43
5.4 三種體積比之渦卷膨脹器於ORC系統之測試 46
5.5 不同工作流體對渦卷膨脹器內部流場之影響 57
5.6 膨脹過程變化率於固定操作狀態與轉速之影響 60
第六章 結論 63
第七章 未來工作 67
參考文獻 69
附錄 75
附錄A 75
附錄B 77
附錄C 79
附錄D 80
符號彙整 82
論文參考文獻:[1] G. Qiu, H. Liu, S. Riffat, “Expanders for micro-CHP systems with organic Rankin cycle,” Applied Thermal Energy, vol. 31, 2011, pp. 3301-3307.
[2] T. C. Hung, T. Y. Shai, S. K. Wang, “A review of organic rankine cycles (ORCs) for the recovery of low-grade waster heat,” Energy, vol. 22, 1997, pp. 661-667.
[3] T. C. Hung, “Waste heat recovery of organic Rankine cycle using dry fluids,” Energy Conversion & Management, vol. 42, 2001 pp. 539-553.
[4] T.C Hung, S. K. Wang, C. H. Kuo, B. S. Pei, K. F. Tsai, “A study of organic working fluids on system efficiency of an ORC using low-grade energy sources,” Energy, vol. 35, 2010, pp. 1403-1411.
[5] B. Saleh, G. Koglbauer M. Wendland, J. Fischer, “Working fluids for low-temperature organic Rankine cycles,” Energy, vol. 32, 2007, pp. 1210-1211.
[6] O. Badr, S. D. Probert, P. W. O'Callaghan, “Selecting a working Fluid for a Rankine-Cycle Engine,” Applied Energy, vol. 21, 1985, pp. 1-42.
[7] V. Maizza, A. Maizza, “Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems,” Applied Thermal Engineering, vol. 21, 2001, pp. 381-390.
[8] A. Borsukiewicz-Gozdur., W. Nowak, “Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius–Rankine cycle,” Energy, vol. 32, 2007, pp. 344-352.
[9] T. Yamamoto, T. Furuhata, N. Arai, K. Mori, “Design and testing of the organic Rankine cycle,” Energy, vol. 26, 2001, pp. 239-251.
[10] V. M. Nguyen, P.S. Doherty, S.B. Riffat, “Development of a prototype low-temperature Rankine cycle electricity generation system,” Applied Thermal Engineering, vol. 21, 2001, pp. 161-181.
[11] W. Yagoub, P. Doherty, S.B. Riffat, “Solar energy-gas driven micro-CHP system for an office building,” Applied Thermal Engineering, vol. 26, 2006, pp. 1604–1610.
[12] S. H. Kang, “Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid,” Energy, vol. 41, 2012, pp. 514-524.
[13] G. Pei, J. Li, Y. Li, D. Wang, J. Ji, “Construction and dynamic test of a small-scale organic Rankine cycle,” Energy, vol. 36, 2011, pp. 3215-3223.
[14] J. Li, G. Pei, Y. Li, D. Wang, J. Ji, “Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures,” Eneryg, vol. 38, 2012, pp. 85-95.
[15] A B. Gozdur, “Experimental investigation of R227ea applied as working fluid in the ORC power plant with hermetic turbogenerator,” Applied Thermal Engineering, vol. 56, 2013, pp. 126-133.
[16] W. Wang, Y. T. Wu, C. F. Ma, L. D. Liu, J. Yu, “Preliminary experimental study of single screw expander prototype,” Applied Thermal Engineering, vol. 31, 2011, pp. 3684-3688.
[17] W. He, Y. Wu, Y. Peng, Y. Zhang, C. Ma, G. Ma, “Influence of intake pressure on the performance of single screw expander working with compressed air,” Applied Thermal Engineering, vol. 51, 2013, pp. 662-669.
[18] Y. Lu, W. He, Y. Wu, W. Ji, C. Ma, H. Guo, “Performance study on compressed air refrigeration system based on single screw expander,” Energy, vol. 55, 2013, pp. 762-768.
[19] M. M. Tahir, N. Yamada, T. Hoshino, “Efficiency of Compact organic Rankine cycle system with rotary-vane-type expander for Low-Temperature waste heat recovery,” International Journal of Civil and Environmental Engineering, vol. 2:1, 2010, pp. 12-16.
[20] B. Yang, X. Peng, Z. Hea, B. Guo, Z. Xing, “Experimental investigation on the internal working process of a CO2 rotary vane expander,” Applied Thermal Engineering, vol. 29, 2009, pp. 2289–2296.
[21] G. Qui, Y. Shao, J. Li, H. Liu, S. B. Riffat, “Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications,” Fuel, vol. 96, 2012, pp. 347-382.
[22] O. Badr, D. Probert, P. W. O'Callaghan, “Multi-vane expanders as prime movers in low-grade energy engines,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 200, 1986, pp. 117-125.
[23] X.D. Wang, L. Zhao, J.L. Wang, W.Z. Zhang, X.Z. Zhao, W. Wu, “Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa,” Solar Energy, vol. 84, 2010, pp. 353-364.
[24] N. Zheng, L. Zhao, X.D. Wang, Y.T. Tan, “Experimental verification of a rolling-piston expander that applied for low-temperature organic Rankine cycle,” Applied Energy, vol. 112, 2013, pp. 1265-1274.
[25] R. Zanelli D. Favrat, “Experimental Investigation of a hermetic scroll expander-generator,” International Compressor Engineering Conference, 1994, pp. 459-464.
[26] J. A. Mathias, Jr. Johnston, J. Cao, Dk. Priedeman, Rn. Christensen, “Experimental testing of gerotor and scroll expander used in, and energetric and exergetric modeling of modeling of, an organic Rankine cycles,” Journal of Energy Resources Techology, 2009, 131:12201
[27] R. B. Peterson, H. Wang, T. Herron, “Performance of a small-scale regenerative Rankine power cycle employing a scroll expander,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 222, 2008, pp.271-282.
[28] H. Wang, R. B. Peterson, T. Herron, “Experimental performance of a compliant scroll expander for an organic Rankine cycle,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 223, 2009, pp. 863-872.
[29] T. Saitoh, N. Yamada, S. Wakashima, “Solar Rankine cycle system using scroll expander,” Journal of Environment and Engineering, vol. 2, 2007, pp. 708-719.
[30] H. J. Kim, J. M. Ahn, I. Park, P. C. Rha, “Scroll expander for power generation from a low-grade steam source,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 221, 2007, pp. 705-712.
[31] D. Manolakos, G. Papadakis, S. Kyritsis, K. Bouzianas, “Experimental evaluation of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination,” Desalination, vol. 203, 2007, pp. 366-374.
[32] V. Lemort, S. Declaye, S. Quoilin, “Experimental characterization of a hermetic scroll expander for use in a micro-scale Rankine cycle,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 226, 2012, pp. 126-136.
[33] V. Lemort, S. Quoilin, C. Cuevas, J. Lebrun, “Testing and modeling a scroll expander integrated into an organic Rankine cycle,” Applied Thermal Engineering, vol. 29, 2009, pp. 3094-3102.
[34] S. Declaye, S. Quoilin, L. Guillaume, V. Lemort, “Experimental study on an open-drive scroll expander integrated into an ORC (organic Rankine cycle) system with R245fa as working fluid,” Energy, vol. 55, 2013, pp. 173-183.
[35] N. Zhau, X. Wang, Z. Chen, Z. Wang, “Experimental study on organic Rankine cycle for waste heat recovery from low-temperature flue gas,” Energy, vol. 55, 2013, pp. 216-225.
[36] H. Wang, R. Peterson, K. Harada, E. Miller, R. Ingram-Goble, L. Fisher, J. Yih, G. Ward, “Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling,” Energy, vol. 36, 2011, pp. 447-458.
[37] B. Aoun, D. Clodic, “Theoretical and experimental study of an oil-free scroll vapor expander,” International Compressor Engineering Conference, 2008, pp. 1925-1933.
[38] I. H. Bell, V. Lemort, E. A. Groll, J. E. Braun, G. B. King, W. T. Horton, “Liquid flooded compression and expansion in scroll machines part II: experimental testing and model validation,” International Journal of Refrigeration, vol. 35, 2012, pp. 1890-1900.
[39] N. Yamada, M. Watanabe, A. Hoshi, “Experiment on pumpless Rankine-type cycle with scroll expander,” Energy, vol. 49, 2013, pp. 137-145.
[40] T. Yanagisawa, M. Fukuta, Y. Ogi, T. Hikichi, “Performance of an oil-free scroll-type air expander,” Proc. of the ImechE Conf. Trans. On compressors and their systems, 2001, pp. 167-174.
[41] G. Liu, Y. Zhao, L. Li, P. Shu, “Simulation and experiment research on wide ranging working process of scroll expander driven by compressed air,” Applied Thermal Engineering, vol. 30, 2010, pp. 2073-2079.
[42] S. Quoilin, V. Lemort, J. Lebrun, “Experimental study and modeling of an organic Rankine cycle using scroll expander,” Applied Energy, vol. 87, 2010, pp. 1260-1268.
[43] S. Clemente, D. Micheli, M. Reini, R. Taccani, “Energy efficiency analysis of organic Rankine cycles with scroll expanders for cogenerative applications,” Applied Energy, vol. 97, 2012, pp. 792-801.
[44] H. Y. Kim, J. M. Ahn, S. O. Cho, K. R. Cho, “Numerical simulation on scroll expander–compressor unit for CO2 trans-critical cycles,” Applied Thermal Engineering, vol.28, 2008, pp. 1654-1661.
[45] R. Bracco, S. Clemente, D. Micheli, M. Renini, “Experimental tests and modelization of a domestic-scale ORC (organic Rankine cycle),” Energy, vol. 58, 2013, pp. 107-116.
[46] B. Wang, X. Li, W. Shi, “A general geometrical model of scroll compressors based on discretional initial angles of involute,” International Journal of Refrigeration, vol. 28, 2005, pp. 958-966.
[47] M.M Cui, “Comparative study of the impact of the dummy port in a scroll compressor,” International Journal of Refrigeration, vol. 30, 2007, pp. 912-925.
[48] R. I. Issa, ”Solution of the Implicitly Discretised Fluid Flow Equation by Operator-Splitting,” J. Computational Physics, vol. 62, 1985, pp. 40-65.
[49] B. E. Launder and D. B. Spalding, “Mathematical models of turbulence,” London: Elsevier Inc, 1972, pp. 90-100
[50] J. P. Van Doormaal, G. D. Raithby, “Enhancements of SIMPLE method for predicting incompressible fluid flows,” Numerical Heat Transfer, vol. 7, 1984, pp. 147-163.
論文全文使用權限:同意授權於2016-02-10起公開