現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:(I)利用氫醌及氫醌衍生物作為染料敏化太陽能的氧化還原對
(II)利用氫醌的電化學特性製作高選擇性的氟離子電化學探針 [以論文名稱查詢館藏系統]
論文英文名稱:(I)Dye-Sensitized Solar Cells Based on Hydroquinone/Benzoquinone derivative as a redox Couple
(II)A new highly selective OFF-ON electrochemical latent redox ratiometric chemodosimeters for the rapid detection of fluoride [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:102
出版年度:103
中文姓名:李文詠
英文姓名:Wen-Yung Li
研究生學號:101738054
學位類別:碩士
語文別:中文
口試日期:2014-06-05
論文頁數:63
指導教授中文名:黃聲東
指導教授英文名:Sheng-Tung Huang
口試委員中文名:汪昆立;郭憲壽
口試委員英文名:KUN-LI WANG;XIAN-SHOU GUO
中文關鍵詞:(I)染料敏化太陽能電池電解液氫醌(II)氫醌電化學探針選擇性
英文關鍵詞:(I)dye-sensitized solar cellelectrolytic solutionhydroquinone(II)hydroquinoneelectrochemical sensorfluorideselectivity
論文中文摘要:染料敏化太陽能電池具有低成本及高效率的特性,近幾年來為太陽能領域的研究重點,電解質在染料敏化太陽能電池非常重要,而目前最常使用的電解質通常是碘化物/三碘化物作為氧化還原電對。但是,碘作為氧化還原電對的缺點已被探討出來,包括可見光吸收,金屬反電擊的腐蝕,和碘的昇華。因此,我們使用氫醌/苯醌取代碘作為氧化還原電對,並且進行光電性質的比較,可發現光電轉化效率叔丁基對苯二酚較碘好,而效率與碘非常相近。
  近年來在氟離子探針的發展與應用上,鮮少有使用電化學來檢測氟離子的例子,使用電化學的方式無法準確得知濃度,只能依據位移作為判斷。因此,我們開發一個具有高選擇性及可定量的氟離子探針(H2Q’ 和 MH2Q’) ,透過使用矽醚保護基隱藏H2Q的電化學信號以獲得探針 H2Q’(OFF狀態) ,氟離子引發Si-O鍵斷裂,將保護基去除,釋放電化學訊號H2Q(ON狀態),H2Q容易經受電化學氧化還原反應,並在電極表面上顯示它的氧化還原峰,依賴氟化物的濃度,釋放出固定的H2Q濃度。檢測極限(LOD)MH2Q'為2.38 μM ,且H2Q’ 為23.8μM。在檢測的陰離子中,只有氟化物能夠將H2Q’脫保護變成H2Q,產生氧化還原反應,因為矽醚類的氟離子探針在水中有非常好的專一性。且MH2Q’也是具有一個高度選擇性的氟離子探針。
論文英文摘要:Dye-sensitized solar cells are low cost solar cells to carry out the energy conversion from solar light to electricity with high efficiency. Conventionally, Iodide/triiodide (I-/I3-) redox pairs are the most commonly employed electrolyte system in the DSSCs. However, they have several drawbacks such as light absorption, corrosion associated with metal current collectors, sublimation of iodine and mismatch between I-/I3- redox potential and HOMO level of the photosensitizer. Therefore, finding an alternative electrolyte has become considerable attention in the recent years to circumvent these limitations of I-/I3- redox pair. In the present work, we have demonstrated t-butyl hydroquinone substituted hydroquinone/benzoquinone (tBu-HQ/tBu-BQ) as the potential alternative to the I-/I3- redox pair. The tBu-HQ/tBu-BQ presented comparable DSSC performance relative to I-/I3- redox pair in terms of efficiency and incident photon current efficiency (IPCE) which revealing its great potential to be as the electrolyte for the fabrication of versatile DSSCs.
The second part of this thesis is the improving of fluoride detection. We described highly selective OFF-ON electrochemical latent redox ratiometric chemodosimeters (H2Q’ and MH2Q’) for the selective detection of fluoride through simple selective protection/deprotection strategy. The electrochemical signal of hydroquinone (H2Q) moiety within this latent redox probe was masked by protecting its hydroxyl group as silylether that resulted in the formation of latent probe, H2Q’ (OFF). The externally added fluoride ion triggered the deprotection of H2Q’ which leading to the unmasking of H2Q electrochemical property (ON). The amount of liberated H2Q is quantitative and its redox peak currents are linearly dependent with the concentration of fluoride that leading to the ratiometric detection. The LOD observed for the probes are sufficiently lower; 23.8 μM for H2Q’ and 2.38 μM for MH2Q’. The deprotection is highly specific for fluoride over other anions investigated. The probes are highly stable and exhibited rapid response time and promising practical applicability. The proposed strategy holds great promise for the commencement of new H2Q based electrochemical probes by tuning the electronic properties of H2Q through varying the substituents.
論文目次:目錄
摘 要 I
ABSTRACT III
誌謝 V
圖目錄 IX
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 2
2.1 染料敏化太陽能電池 2
2.2 染料敏化太陽能電池的工作原理 2
2.3 染料 4
2.3.1 金屬錯合物染料 4
2.3.2 有機染料 6
2.4 電解液 7
2.4.1 液態電解液 7
2.4.2 固態電解液 10
2.4.3 擬固態(膠態)電解液 11
2.5 研究動機與目的 13
第三章 實驗藥品與儀器 14
3.1 實驗藥品 14
3.2 實驗儀器 16
3.3 染料敏化太陽能電池元件檢測儀器 17
3.3.1 模擬太陽光之光電轉換效率分析(I-V Curve) 17
3.3.2 入射單色光子-電子轉換效率(IPCE) 18
3.3.3 交流阻抗分析(EIS) 18
第四章 實驗方法與流程 20
4.1 FTO導電玻璃與清潔 20
4.2 電解液的製備 20
4.3 製作工作電極 21
4.4 製備反電極 22
4.5 電池封裝 22
4.6 染料敏化太陽能電池的製備流程圖 23
第五章 結果與討論 24
5.1 電壓-電流特性曲線量測(I-V Curve)之分析結果 24
5.2 入射單色光子-電子轉換效率(IPCE)之分析結果 25
5.3 電化學交流阻抗(EIS)之分析結果 26
5.4 膠態電解液之長效穩定性測試 27
第六章 結論 29
參考文獻 30
(II)利用氫醌的電化學特性製作高選擇性的氟離子電化學探針 34
第一章 前言 35
第二章 文獻探討 36
2.1 氟離子檢測器 36
2.2 氫鍵型氟離子探針 37
2.2.1 分子間氫鍵型氟離子探針 37
2.2.2 分子內氫鍵型氟離子探針 38
2.3 親核型氟離子探針 39
2.4 電化學氟離子探針 40
2.5 醌的物理性質與電化學特性 42
2.5.1 醌-生物電化學探針 43
2.5.2 醌-隱藏式電化學探針 43
2.5.3 醌-隱藏式循環電化學探針 44
第三章 氟離子探針設計 46
3.1氟離子探針設計概念與偵測機制 46
第四章 實驗藥品與儀器 47
4.1 實驗藥品 47
4.2 實驗儀器 48
4.2.1電化學分析儀-循環循環伏安法原理 49
4.3 合成步驟 50
4.3.1氟離子探針1,4-bis((tert-butyldimethylsilyl)oxy)benzene
H2Q’(1c)之合成步驟 50
4.3.2氟離子探針 (2-methoxy-1,4-phenylene)bis(oxy))bis(tert-
butyldimethylsilane) MH2Q’(2c)之合成步驟 51
4.4 檢測氟離子實驗步驟 52
4.4.1 循環伏安法(CV)檢測條件 53
第五章 結果討論 54
5.1 檢測氟離子 54
5.1.1 氟離子探針H2Q’ 54
5.1.2 氟離子探針MH2Q’ 56
5.1.3 氟離子探針H2Q’-選擇性測試 58
5.1.4 氟離子探針-穩定性 59
第六章 結論 60
參考文獻 61
論文參考文獻:參考文獻(I)
1.O'Regan, B.; Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 737-740.
2.Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Gratzel, M., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334 (6056), 629-634.
3.Gratzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164 (1–3), 3-14.
4. Mishra, A.; Fischer, M. K. R.; Bauerle, P., Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angewandte Chemie International Edition 2009, 48 (14), 2474-2499.
5.Koumura, N.; Wang, Z. S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K., Alkyl-functionalized organic dyes for efficient molecular photovoltaics. J Am Chem Soc 2006, 128 (44), 14256-14257.
6. Kakiage, K.; Tokutome, T.; Iwamoto, S.; Kyomen, T.; Hanaya, M., Fabrication of a dye-sensitized solar cell containing a Mg-doped TiO2 electrode and a Br3-/Br- redox mediator with a high open-circuit photovoltage of 1.21 V. Chemical Communications 2013, 49 (2), 179-180.
7.Wu, W.; Jin, Z.; Hua, Z.; Fu, Y.; Qiu, J., Growth mechanisms of CuSCN films electrodeposited on ITO in EDTA-chelated copper(II) and KSCN aqueous solution. Electrochimica Acta 2005, 50 (11), 2343-2349.
8.Li, B.; Wang, L.; Kang, B.; Wang, P.; Qiu, Y., Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells 2006, 90 (5), 549-573.
9. Cheng, M.; Yang, X.; Zhang, F.; Zhao, J.; Sun, L., Efficient Dye-Sensitized Solar Cells Based on Hydroquinone/Benzoquinone as a Bioinspired Redox Couple. Angewandte Chemie International Edition 2012, 51 (39), 9896-9899.
10.Tian, H.; Jiang, X.; Yu, Z.; Kloo, L.; Hagfeldt, A.; Sun, L., Efficient Organic-Dye-Sensitized Solar Cells Based on an Iodine-Free Electrolyte. Angewandte Chemie 2010, 122 (40), 7486-7489.
11.Wu, H.; Lv, Z.; Hou, S.; Cai, X.; Wang, D.; Kafafy, H.; Fu, Y.; Zhang, C.; Chu, Z.; Zou, D., A new ionic liquid organic redox electrolyte for high-efficiency iodine-free dye-sensitized solar cells. Journal of Power Sources 2013, 221, 328-333.
12.Tsao , H. N.; Yi , C.; Moehl, T.; Yum, J.-H.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Gratzel, M., Cyclopentadithiophene Bridged Donor–Acceptor Dyes Achieve High Power Conversion Efficiencies in Dye-Sensitized Solar Cells Based on the tris-Cobalt Bipyridine Redox Couple. ChemSusChem 2011, 4 (5), 591-594.
13.Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395 (6702), 583-585.
14.Rutkowska, I.; Andrearczyk, A.; Zoladek, S.; Goral, M.; Darowicki, K.; Kulesza, P., Electrochemical characterization of Prussian blue type nickel hexacyanoferrate redox mediator for potential application as charge relay in dye-sensitized solar cells. J Solid State Electrochem 2011, 15 (11-12), 2545-2552.
15.Sakamoto, H.; Igarashi, S.; Uchida, M.; Niume, K.; Nagai, M., Highly efficient all solid state dye-sensitized solar cells by the specific interaction of CuI with NCS groups II. Enhancement of the photovoltaic characteristics. Organic Electronics 2012, 13 (3), 514-518.
16.Premalal, E. V. A.; Dematage, N.; Kumara, G. R. R. A.; Rajapakse, R. M. G.; Shimomura, M.; Murakami, K.; Konno, A., Preparation of structurally modified, conductivity enhanced-p-CuSCN and its application in dye-sensitized solid-state solar cells. Journal of Power Sources 2012, 203, 288-296.
17.Huang, K.-C.; Chen, P.-Y.; Vittal, R.; Ho, K.-C., Enhanced performance of a quasi-solid-state dye-sensitized solar cell with aluminum nitride in its gel polymer electrolyte. Solar Energy Materials and Solar Cells 2011, 95 (8), 1990-1995.
18.Kim, Y. J.; Kim, J. H.; Kang, M. S.; Lee, M. J.; Won, J.; Lee, J. C.; Kang, Y. S., Supramolecular Electrolytes for Use in Highly Efficient Dye-Sensitized Solar Cells. Advanced Materials 2004, 16 (19), 1753-1757.
19.Ileperuma, O. A.; Dissanayake, M. A. K. L.; Somasunderam, S.; Bandara, L. R. A. K., Photoelectrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-based polymer electrolytes. Solar Energy Materials and Solar Cells 2004, 84 (1–4), 117-124.
20.Yang, H.; Huang, M.; Wu, J.; Lan, Z.; Hao, S.; Lin, J., The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells. Materials Chemistry and Physics 2008, 110 (1), 38-42.
21.Chen, C.-L.; Teng, H.; Lee, Y.-L., Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate). Journal of Materials Chemistry 2011, 21 (3), 628-632.
22.Wang, Q.; Moser, J.-E.; Gratzel, M., Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B 2005, 109 (31), 14945-14953.
23.Boschloo, G.; Haggman, L.; Hagfeldt, A., Quantification of the Effect of 4-tert-Butylpyridine Addition to I-/I3- Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells. The Journal of Physical Chemistry B 2006, 110 (26), 13144-13150.
參考文獻(II)
1.Horowitz, H. S., The 2001 CDC Recommendations for Using Fluoride to Prevent and Control Dental Caries in the United States. Journal of Public Health Dentistry 2003, 63 (1), 3-8.
2.Kleerekoper, M., THE ROLE OF FLUORIDE IN THE PREVENTION OF OSTEOPOROSIS. Endocrinology and Metabolism Clinics of North America 1998, 27 (2), 441-452.
3.Kim, S. Y.; Park, J.; Koh, M.; Park, S. B.; Hong, J.-I., Fluorescent probe for detection of fluoride in water and bioimaging in A549 human lung carcinoma cells. Chemical Communications 2009, 31, 4735-4737.
4.Panzella, L.; Pezzella, A.; Arzillo, M.; Manini, P.; Napolitano, A.; d'Ischia, M., A novel fluoride-sensing scaffold by a peculiar acid-promoted trimerization of 5,6-dihydroxyindole. Tetrahedron 2009, 65 (10), 2032-2036.
5.Kigga, M.; Trivedi, D. R., "Naked-eye" detection of inorganic fluoride ion in aqueous media using base labile proton: A different approach. Journal of Fluorine Chemistry 2014, 160, 1-7.
6.Boiocchi, M.; Del Boca, L.; Gomez, D. E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E., Nature of Urea−Fluoride Interaction:  Incipient and Definitive Proton Transfer. Journal of the American Chemical Society 2004, 126 (50), 16507-16514.
7.Hudnall, T. W.; Melaimi, M.; Gabbai, F. P., Hybrid Lewis Acid/Hydrogen-Bond Donor Receptor for Fluoride. Organic Letters 2006, 8 (13), 2747-2749.
8.Mahapatra, A. K.; Maiti, K.; Sahoo, P.; Nandi, P. K., A new colorimetric and fluorescent bis(coumarin)methylene probe for fluoride ion detection based on the proton transfer signaling mode. Journal of Luminescence 2013, 143, 349-354.
9.Sokkalingam, P.; Lee, C. H., Highly sensitive fluorescence "turn-on" indicator for fluoride anion with remarkable selectivity in organic and aqueous media. J Org Chem 2011, 76 (10), 3820-3828.
10.Aldridge, S.; Bresner, C.; Fallis, I. A.; Coles, S. J.; Hursthouse, M. B., Multidentate Lewis acids: synthesis, structure and mode of action of a redox-based fluoride ion sensor. Chemical Communications 2002, (7), 740-741.
11.Dusemund, C.; Sandanayake, K. R. A. S.; Shinkai, S., Selective fluoride recognition with ferroceneboronic acid. Journal of the Chemical Society, Chemical Communications 1995,3, 333-334.
12.Madeo, J.; Zubair, A.; Marianne, F., A review on the role of quinones in renal disorders. SpringerPlus 2013, 2 (1), 1-8.
13.Zhou, Y.; Wang, M.; Xu, Z.; Ni, C.; Yin, H.; Ai, S., Investigation of the effect of phytohormone on the expression of microRNA-159a in Arabidopsis thaliana seedlings based on mimic enzyme catalysis systematic electrochemical biosensor. Biosensors and Bioelectronics 2014, 54, 244-250.
14.Liang, F.; Hu, L.; Li, Y.; Majeed, S.; Li, H.; Cai, H.; Yang, X.; Xu, G., Low-potential determination of hydrogen peroxide, uric acid and uricase based on highly selective oxidation of p-hydroxyphenylboronic acid by hydrogen peroxide. Sensors and Actuators, B: Chemical 2013, 178, 144-148.
15.Mi, Y.; Schreiber, J. V.; Corey, E. J., Total Synthesis of (+)-α-Onocerin in Four Steps via Four-Component Coupling and Tetracyclization Steps. Journal of the American Chemical Society 2002, 124 (38), 11290-11291.
16.Willis, J. P.; Gogins, K. A. Z.; Miller, L. L., Pyridinium chlorochromate releases quinones from hydroquinone silyl ethers. The Journal of Organic Chemistry 1981, 46 (16), 3215-3218.
論文全文使用權限:同意授權於2019-06-25起公開