現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:垂直軸雙胞胎風力機研製與其效率量測 [以論文名稱查詢館藏系統]
論文英文名稱:Development and Working Efficiency Measurements for the Twin Rotor Vertical Axis Windmil [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:機電整合研究所
畢業學年度:102
出版年度:103
中文姓名:葉立友
英文姓名:Li-Yu Yeh 葉立友
研究生學號:101408087
學位類別:碩士
語文別:中文
口試日期:2014-06-07
論文頁數:99
指導教授中文名:丁振卿
指導教授英文名:Chen-Ching Ting 丁振卿
口試委員中文名:楊台發;謝宗翰;蘇崇輝;李靖男
口試委員英文名:Tai-Fa Young 楊台發;Tzong-Hann Shieh 謝宗翰;Chung-Hwei Su 蘇崇輝;Jing-Nang Lee 李靖男
中文關鍵詞:雙獨立轉軸之垂直軸雙胞胎風力機雙軸套筒二次風能LabVIEW
英文關鍵詞:Twin-rotor vertical axis windmillTwin-rotor mechanismSecondary wind energyLabVIEW
論文中文摘要:  本論文主要工作為開發具雙獨立轉軸之垂直軸雙胞胎風力機,利用雙軸套筒將內外轉軸獨立開來,達到互不干擾運作之目的以利用二次風能,並量測其整體的轉換效率。結構上,內轉軸連接阻力型葉片,而外轉軸連接升力型葉片,當氣流通過風力機的時候,會先被外部的升力型葉片捕捉部分風能,而剩下的風能將會被內葉片捕捉達到有效利用風能之目的。本垂直軸雙胞胎風力機在設計演進上可以區分成三代,第一代側重在概念及葉片型式的確立;第二代則是著重於雙軸套筒之改良並確定其機構設計;第三代則是改良葉片參數以改善風力機整體的轉動情形。此外,本工作亦利用LabVIEW軟體來自動化監控與量測轉動資訊,如:葉片轉速、尖速比及效率等等。實驗結果顯示,改良設計參數後的二階Savonius葉片在尖速比1.05時,有最佳效率19.5%,外葉片方面則是利用半圓形阻力型葉片與不同葉片數量的Clark-Y外葉片做一系列的量測,結果顯示,三片外葉片有較好的表現,在尖速比為1.13時,其效率為6.5%。內外葉片結合運轉方面,本論文分別以兩片及三片Clark-Y外葉片與Savonius內葉片結合來量測內外獨立運轉時,風力機的整體效率。量測結果顯示,不管外葉片數量如何,在內外葉片反向對轉時,結果對內葉片有利但對外葉片不利;而在內外葉片同方向運轉時,則是對內葉片不利但對外葉片有利。本實驗在內葉片與三片Clark-Y外葉片結合並反向運轉的情形下測試,整體效率的表現較佳,最佳效率出現在風速為8m/s時,整體轉換效率為21.6%。
論文英文摘要:  This article is focused on developing the twin-rotor vertical axis windmill to capture the so-called secondary wind energy and performing its working efficiency measurements using LabVIEW program. Structurally, the inner and outer rotors are separated by twin-rotor mechanism so that the two rotors can be operated independently. In process, the inner and outer rotors were built in drag-type and lift-type blades respectively. The input wind energy can first be captured by the outer turbine and the inner turbine will capture the rest of wind energy which is also called the secondary wind energy. In this work, the twin-rotor vertical axis windmill can be distinguished from three generations in mechanical design. The first generation is focused on developing the twin-rotor mechanism idea and choosing the turbine blades type. The second one is to adjust the mechanism so that inner and outer turbines can be operated independently. The third generation concentrates on blades design to increase the working efficiency. Moreover, this work also used encoders and LabVIEW program to monitor the relevant information automatically, such as RPM, TSR and working efficiency of twin-rotor vertical axis windmill.
The results show that modified two-steps Savonius rotor has the best working efficiency of 19.5% at TSR = 1.05. For the outer turbine of semicircular drag-type with different number of Clark-Y blades, the results show that the outer turbine with three Clark-Y blades has working efficiency of 6.5% at TSR = 1.13. Moreover, this work used two and three outer blades to combine with the inner turbine as the twin-rotor vertical axis windmill for working efficiency measurements. The results show that when the inner and outer turbines turn contrarily with any number of outer blades will received benefit for the inner turbine and disadvantage for the outer turbine, when the inner and outer turbines turn in same direction also with any number of outer blades will received the opposite result, i.e. disadvantage for the inner turbine and advantage for the outer turbine.
Finally, this work accomplishes the twin-rotor mechanism.
The results show that the inner turbine integrated with three blades outer turbine and turning contrarily received the best working efficiency of 21.6% at wind speed 8 m/s.
論文目次:摘要...................................................i
ABSTRACT.............................................ii
誌謝..................................................iv
目錄...................................................v
表目錄...............................................vii
圖目錄..............................................viii
第一章  緒論..........................................1
1.1 研究背景...........................................1
1.2 文獻回顧...........................................4
1.3 研究動機與目的......................................8
第二章  基礎理論.......................................9
2.1 風力機之效率分析.....................................9
2.1.1 葉片擷取風能之效率分析..............................9
2.1.2 葉片尖速比......................................11
2.2 葉片運動分析.......................................12
2.3 NACA Profile.....................................15
2.4 監控與量測裝置.....................................16
2.4.1 LabVIEW軟體介紹.................................16
2.4.2 旋轉編碼器原理...................................17
第三章  實驗架設.....................................19
3.1 第一代雙獨立轉軸風力機製作...........................19
3.1.1 內葉片製作......................................19
3.1.2 外葉片製作......................................21
3.1.3 雙軸套筒製作....................................23
3.2 第二代雙獨立轉軸風力機製作...........................24
3.2.1 內葉片製作......................................25
3.2.2 外葉片製作......................................27
3.2.3 雙軸套筒製作與確立................................28
3.3 第三代雙獨立轉軸風力機製作...........................30
3.3.1 內葉片製作......................................30
3.3.2 外葉片製作......................................32
3.4 風洞介紹..........................................37
3.5 雙獨立轉軸自動化效率量測架設..........................41
3.5.1 LabVIEW程式撰寫.................................41
3.5.2 編碼器與實機架設..................................46
第四章  結果與討論....................................48
4.1 第一代雙胞胎雙獨立轉軸風力機..........................48
4.2 第二代雙胞胎雙獨立轉軸風力機..........................49
4.2.1 單獨內葉片量測結果................................49
4.2.2 單獨外葉片量測結果................................51
4.3 第三代雙胞胎雙獨立轉軸風力機..........................53
4.3.1 單獨內葉片量測結果................................53
4.3.2 單獨外葉片量測結果................................58
4.3.2.1 單獨外葉片轉速分析..............................58
4.3.2.2 單獨外葉片加速度分析............................61
4.3.2.3 單獨外葉片扭矩分析..............................67
4.3.2.4 單獨外葉片尖速比與效率分析.......................72
4.3.3 雙獨立轉軸之內外結合量測結果........................74
4.3.3.1 內葉片與三片升力型葉片結合後之轉速與尖速比分析.......74
4.3.3.2 內葉片與兩片升力型葉片結合後之轉速與尖速比分析.......79
4.3.3.3 內外結合後外葉片數量對內葉片轉動之影響.............83
4.3.3.4 內外結合後之整體效率分析.........................87
第五章  結論.........................................91
第六章  未來展望......................................93
參考文獻..............................................94
論文參考文獻:[1] E. Worrell, L. Price, N. Martin, C. Hendriks and L.
O. Meida, "Carbon dioxide emissions from the global cement
industry," Energy Environ., vol. 26, 2001, pp. 303-329.
[2] 許晃雄,「人為的全球暖化與氣候變遷」,東亞大氣行動聯盟第四次國際議,台北,1998。
[3] 李育明,「化石燃料利用(上)」,國立臺北大學能源教育教材},臺北,2007。
[4] 國際可再生能源機構(International Renewable Energy Agency,
IRENA),http://www.irena.org/home/index.aspx?PriMenuID=12&mnu=Pri,到訪日期:2014/04/15。
[5] World Wind Energy Half-year Report, World Wind Energy
Association, http://www.wwindea.org/home/index.php,
到訪日期:2014/04/11。
[6] M. L. Wald, China's Galloping Wind Market, The New York Times, 2011.
[7] E. Lantz, M. hand and R. Wiser, "The Past and Future Cost of Wind Energy," National Renewable Energy Laboratory, 2012.
[8] 呂威賢,「風的故事,從風車到風力機」,科學發展,第三百八十三期,2004,第6-13頁。
[9] 中央大學台灣風能查詢系統,http://www.atm.ncu.edu.tw/93/wind/main.asp,到訪日期:2014/05/01。
[10] 何佩芬,「綠色能源迎風啟動 - 台灣風力發電的現況與展望」,經濟部能源局能源報導,2005,第11頁。
[11] A. L. Rogers and J. F. Manwell, "Wind turbine noise
issues," Department of Mechanical and Industrial Engineering, University of Massachusetts at Amherst, 2004, pp. 8-12.
[12] D. Shepherd, D. McBride, D. Welch and E. M. Hill, "Evaluating the impact of wind turbine noise on health-related quality of life," it Noise and Health, vol. 13, 2011, pp. 333-339.
[13] I. Paraschivoiu, Wind turbine design : with emphasis on Darrieus concept, Presses Internationales Polytechnique, 2004.
[14] A. J. Alexander and B. P. Holownia, "Wind tunnel test on a Savonius rotor," J. Ind. Aerodynamics, vol. 3, 1978, pp. 343-351.
[15] R. C. Bansal, T. S. Bhatti and D. P. Kothari, "On some design aspects of wind energy conversion systems," Energy Convers, vol. 43, 2002, pp. 2175-2187.
[16] N. Fujisawa, "On the torque mechanism of savonius rotor," Wind Engineering and Industrial Aerodynamics}, vol. 40, 1992, pp. 227-292.
[17] U. Izumi, N. Hiroshi and S. Jinkichi, "Experimentally determining the optimum design configuration for savonius rotors," it The Japan Society of Mechanical Engineers}, vol. 52, 1986, pp. 2973-2982.
[18] J. L. Menet, "A double - step savonius rotor for local production of electricity : a design study," Renewable Energy, vol. 29, 2004, pp. 1843-1862.
[19] M. A. Kamoji, S. B. Kedare and S. V. prabhu, "Experimental investigations on single stage, two stage and three stage conventional savonius rotor," it International Journal of Energy Research}, vol. 32, 2008, pp. 877-895.
[20] U. K. Saha, S. Thotla and D. Maity, "Optimum design configuration of savonius rotor through wind tunnel experiments," Journal of Wind Engineering and Industrial Aerodynamics, vol. 96, 2008, pp. 1359-1375.
[21] 邱子超,全風場風力發電開發,碩士論文,國立臺北科技大學,臺北,2012。
[22] M. H. Mohamed, G. Janiga, E. Pap and D. Thevenin, "Optimal blade shape of a modified savonius turbine using an obstacle shielding the returning blade," Energy Conversion and Management}, vol. 52, 2011, pp. 236-242.
[23] R. Gupta, A. Biswas and K. K. Sharma, "Comparative study of a three-bucket savonius rotor with a combined three-bucket savonius-three-bladed darrieus rotor," Renewable Energy, vol. 33, 2008, pp. 1974-1981.
[24] H. Oshitani, M. Okamoto, A. Yamashita, K. Taniguchi, H. Ueyama, M. Miyata and K. Yamamoto, "The experiment of pumping of ground-water with a savonius windmill," J. Rakuno Gakuen Univ., vol. 32, no. 2, 2008, pp. 221-225.
[25] R. Hilbert, G. Janiga, R. Baron and D. Thevenin, "Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms," International Journal of Heat Mass Transfer}, vol. 49, 2006, pp. 2567-2577.
[26] G. Janiga and D. Thevenin, "Reducing the CO emissions in a laminar burner using different numerical optimization methods," Journal of Power Energy, vol. 221(5), 2007, pp. 647-655.
[27] M. S. Hameed and S. K. Afaq, "Design and analysis of a straight bladed vertical axis wind turbine blade using analytical and numerical techniques," Ocean Engineering, vol. 57, 2013, pp. 248-255.
[28] J. DeCoste, "Vertical axis wind turbine. Design project MECH 4010," Ocean Engineering, Department of Mechanical Engineering, Dalhousie University, 2005.
[29] S. Eriksson, H. Bernhoff and M. Leijon, "Evaluation of different turbine concepts for wind power," Renewable and Sustainable Energy Reviews}, vol. 12, 2008, pp. 1419-1434.
[30] 牛山 泉、三野 正洋,小型風車手冊,臺大出版中心,2010,第101頁。
[31] J. DeCoste, "Self-starting darrieus wind turbine, Design project, MECH 4020," Department of Mechanical Engineering, Dalhousie University,
[32] M. Islam, A. Fartaj and R. Carriveau, "Analysis of the design parameters related to fixed-pitch straight-bladed vertical axis wind turbine," Wind Engineering, vol. 32, 2008, pp. 491-507.
[33] Pramod Jain, Wind Energy Engineering, ISBN-9780071714778, 2011.
[34] M. Islam, David S. K. Ting and A. Fartaj, "Aerodynamic models for darrieus-type straight-bladed vertical axis wind turbines," Renewable and Sustainable Energy Reviews}, vol. 12, Issue 4, 2008, pp. 1087-1109.
[35] M. Wahl, Designing an h-rotor type wind turbine for operation on amundsen-scott south pole station, Uppsala Universitet, 2007, pp. 7-9.
[36] K. Takahiro, K. Tetsuyoshi, Y. Tatsuro, T. Shinei, K. Nobuyoshi and K. Shigeo, "Performance of vertical axis wind turbine with variable-pitch straight blades by a linkage mechanism," The Japan Society of Mechanical Engineers}, vol. 74, 2008, pp. 2543-2551.
[37] 曲建俊、許明偉、李中杰、支鈔,「一種升阻複合型垂直軸風力機」,可再生能源,第28卷,第1期,2010,第101-104頁。
[38] 新高能源科技股份有限公司-
Hi-VAWT,http://www.hi-vawt.com.tw/tw/tw_welcome.html,到訪日期:2014/04/10。
[39] T. Wakui, Y. Tanzawa, T. Hashizume and T. Nagao, "Hybrid configuration of darrieus and savonius rotors for stand-alone wind turbine-generator systems," Electrical Engineering in Japan, vol. 150, no. 4, 2005, pp. 13-22.
[40] N. Bianchi, S. Bolognani, E. Fornasiero and M. Morandin, "Optimal drive and machine sizing for a self starting, vertical axis, low power wind generator," Energy Conference and Exhibition (ENERGYCON), 2012 IEEE International, Florence, 2012, pp. 178-183.
[41] Md. J. Alam and M. T. Iqbal, "A low cut-in speed marine current turbine," Journal of Ocean Technology, vol. 5, no. 4, 2010, pp. 49-61.
[42] 林厚德,高效率再生能源製冰系統研發,碩士論文,義守大學機械與自動化工程研究所,高雄,2005。
[43] 蕭孟柯,風力製冰與發電兩用機之機電整合與自動控制,碩士論文,國立臺北科技大學製造科技研究所,臺北,2009。
[44] 黃建邦、蕭孟柯、陳建置、陳建成、丁振卿,「風力製冰與發電兩用機開發及其效率量測」,中華民國航空太空學會第五十一屆年會,臺北,2009。
[45] 蕭仲成、蕭孟柯、丁振卿,「風力製冰與發電兩用機開發」,第四屆智慧生活科技研討會,台中,2009,第1354-1357頁。
[46] 賴辰威,高效率全場域風力應用研究,碩士論文,國立臺北科技大學製造科技研究所,臺北,2011。
[47] 葉立友、邱子超、陳建置、丁振卿,「全場域風力發電機效率量測」,中國機械工程學會第二十九屆全國學術研討會,高雄,2012。
[48] C. C. Ting and L. Y. Yeh, "Developing the full-field wind electric generator," International Journal of Electrical Power and Energy Systems, vol. 55, 2014, pp. 420-428.
[49] 朱佳仁,風工程概論,臺北:科技圖書,第236-237頁。
[50] 邱勤山、胡世平、姜太倫、楊建裕,流體機械,臺北:高立圖書有限公司,2004,第278-282頁。
[51] 朱佳仁,工程流體力學,臺北:科技圖書,2012,第168-169頁。
[52] Rupp Carriveau, Fundamental and advanced topics in wind power, ISBN 978-953-307-508-2, 2011, pp. 19-38.
[53] 李岩,「垂直軸風力機講座(二) - 阻力型垂直軸風力機」,可再生能源,第27卷,第2期,2009,地119-121頁。
[54] 郭俊賢,小型風力充電系統之開發,碩士論文,大同大學機械工程研究所,臺北,2008。
[55] 台灣風力發電產業協會,Darrieus風機葉片數與扭轉角度對風機性能的影響,http://www.twtia.org.tw/Industry_List_m.aspx?id=4129&t=2,到訪日期:2014/05/03。
[56] 國家航空暨太空總署,National Aeronautics and Space Administration,http://history.nasa.gov/,到訪日期:2014/05/03。
[57] M. H. Mohamed, "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, 2012, pp. 1-9.
[58] J. Moran, An introduction to theoretical and computational aerodynamics, ISBN 0-486-42879-6, 2003, pp. 7.
[59] NACA Report No. 460, "The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel," http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930091108.pdf。到訪日期:2014/05/05。
[60] 彭錦銅、陳繁興,「工業配線能力本位訓練教材 - 旋轉編碼器的認識」,行政院勞工委員會職業訓練局,PEW-EIW0314,2011。
[61] Blade support limb for vertical axis wind turbine,
U.S. Patent, US-8-272-840-B2, 2012.
[62] Wind mill structure of lift-type vertical wind axis
turbine, U.S. Patent, US-8-496-433-B2, 2013.
論文全文使用權限:不同意授權