現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以低耗電藍牙裝置之訊號強度為基礎的室內定位方法設計與分析 [以論文名稱查詢館藏系統]
論文英文名稱:Design and Analysis of Indoor Localization Based on Received Signal Strength Indicator of Bluetooth Low Energy Devices [以論文名稱查詢館藏系統]
指導教授英文名:Yu-Wei Chen
口試委員英文名:SHIH-HSIEN CHEN;Chien-Wen Wu
英文關鍵詞:Indoor localizationwireless sensor networkBluetooth low energymobile devicetriangulation
論文中文摘要:隨著行動裝置的興起,許多建立在行動裝置上的服務也越來越普及,其中受矚目的服務之一就是適地性服務 (Location Based Service, LBS),LBS的重點之一就是定位的問題,也就是「如何取得使用者的所在地」。定位的種類大致上可以分為室外定位與室內定位,在室外的定位大多是以GPS為基礎的方式來達成取得使用者位置的目的,但在室內GPS無法發揮很大的效果。室內定位其中一個方法就是無線感測器網路 (wireless sensor network, WSN),無線感測器網路上經常遇到的問題是硬體成本、數量與監控環境的範圍的權衡,以及無線訊號容易受到環境的干擾。
論文英文摘要:With the blossom of smart mobile devices, more and more content provider provides location based service on mobile device. When users are in indoor environment, we need to use another way to get user’s location. Wireless sensor network (WSN) is a popular method in indoor location. However, there are some problems in WSN – how to get balance in hardware cost, number of devices, signal coverage, and the multipath effect problem. This thesis proposes a location method based on RSSI of Bluetooth low energy (BLE) devices of which advantages are low device cost, energy conservation, and high popularity. The BLE devices are used as fixed nodes and mobile nodes in the WSN environment for the proposed location method. The main concept of the proposed location method is combining some low complexity RSSI based location algorithms, e.g., triangulation, map data based location method, and so on. Thus, there exist more than one hundred combinations. In the experiment result, we find that six methods achieve 80 percent location errors less than three meters. Further, we also discuss the effects of test environment and different combinations.
論文目次:摘 要 i
誌謝 iii
目 錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
第二章 文獻探討 3
2.1 以全球定位系統為基礎的定位應用 3
2.2以藍芽為基礎的定位應用 4
2.3以RSSI為基礎的定位應用 4
2.3.1與RSSI有關的研究 4
2.3.2 以無線通道模型為基礎的應用 5
2.3.3 以粒子濾波器為基礎的應用 6
2.3.4以指紋法為基礎的應用 7
第三章 定位機制 10
3.1 環境參數建立 11
3.2 變動場域 13
3.3 三角定位法 15
3.4 取樣次數 18
3.5 地圖資訊修正 18
第四章 實驗結果與分析 22
4.1 實驗配置 22
4.2 實驗結果 24
4.3 環境影響探討 35
第五章 結論 38
參考文獻 39
論文參考文獻:[1] Q. Dong and W. Dargie, “Evaluation of the reliability of RSSI for indoor localization,” International Conference on Wireless Communications in Unusual and Confined Areas, 2012, pp. 1-6.
[2] W. C .Hu, N. Kaabouch, L. Chen and H. J. Yang, “Incremental location searching for route anomaly detection,” IEEE International Conference on Electro/Information Technology (EIT), 15-17 May 2011, pp.1-6.
[3] M.Alnaanah and A. Aljaafreh, “A simplified method for off-line track matching for fleet managements,” 2011 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), 6-8 Dec. 2011, pp.1-5.
[4] S. S. Chawathe, “Segment-based map matching,” 2007 IEEE Intelligent Vehicles Symposium, 13-15 June 2007, pp. 1190-1197.
[5] T. Yamaguchi and K. Takami, “Determining a User’s Location in Underground Malls Using Opportunistic Advertisement Delivery Systems,” 2011 IEEE Region 10 Conference - TENCON 2011, 21-24 Nov. 2011, pp. 498-502.
[6] M. Raju, T. Oliveira and D. P. Agrawal, “A practical distance estimator through distributed RSSI/LQI processing - An experimental study,” IEEE International Conference Communications (ICC), 2012, pp. 6575-6579.
[7] M. Shin, H. Jeong and I. J. Division, “An indoor localization pre-processing with optimal channel selection considering channel interference,” 6th International Conference, ICHIT 2012, Daejeon, Korea, 2012, pp. 78-85.
[8] Dept. Electrical Engineering, NCCU, “第六章 無線通道模型概論,” 2008; http://www.ee.ccu.edu.tw/~wl/ofdm/class/class%20pdf/Channel%20model.pdf
[9] K. S. Wong, W. L. Ng, J. H. Chong, C. K. Ng, A. Sali and N. K. Noordin, “GPS based child care system using RSSI technique,” IEEE 9th Malaysia International Conference on Communications (MICC), 2009, pp. 899-904.
[10] P. Barsocchi, S. Lenzi, S. Chessa and G. Giunta, “A novel approach to indoor RSSI localization by automatic calibration of the wireless propagation model,” Vehicular Technology Conference, 2009, pp. 1-5.
[11] J. Y. Wang, C. P. Chen, T. S. Lin, C. L. Chuang, T. Y. Lai and J. A. Jiang, “High-precision RSSI-based indoor localization using a transmission power adjustment strategy for wireless sensor networks,” The 14th IEEE International Conference on High Performance Computing And Communications /The 9th IEEE International Conference on Embedded Software And Systems (HPCC-2012/ICESS-2012), 25-27 June 2012, pp. 1634-1638.
[12] I. Kim, E. Choi and H. Oh, ”Observation and motion models for indoor pedestrian tracking,” 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP), 2012, pp. 482-485.
[13] S. Ali, “Indoor geolocation for wireless networks,” Ph.D. Thesis, Cranfield University, Bedford, U. K., 2011.
[14] B. Park, J. Yoo and H. Kim, “Modeling and analysis of queuing effect of two-level approach to network localization,” ETRI Journal, vol. 34, no. 4, Aug. 2012, pp. 625-628.
[15] R. Mehra and A. Singh, “Real time RSSI error reduction in distance estimation using RLS algorithm,” 2013 IEEE 3rd International Advance Computing Conference (IACC), 22-23 Feb. 2013, pp. 661-665.
[16] B. J. Shin, K. W. Lee, S. H. Choi, J. Y. Kim, W. J. Lee and H. S. Kim, “Indoor WiFi positioning system for Android-based smartphone,” Information and Communication Technology Convergence (ICTC), 2010, pp. 319-320.
[17] R. Sorensen and T. Berglund, “Location tracking on smartphone using IEEE802.11b/g based WLAN infrastructure at ITU of Copenhagen,” Pervasive Computing Course 2010, fall 2010.
[18] I. T. Haque and C. Assi, “Profiling-based indoor localization schemes,” IEEE Systems Journal, Volume: PP, Issue: 99, 2013, pp. 1-10.
[19] Y. Y. Cheng and Y. Y. Lin, “A new received signal strength based location estimation scheme for wireless sensor network,” IEEE Transactions on Consumer Electronics, vol. 55, no. 3, 2009, pp. 295-1299.
[20] C. Wu, Z. Yang, Y. Liu and W. Xi, “WILL: Wireless indoor localization without site survey,” 2012 Proceedings IEEE INFOCOM, 25-30 March 2012, pp.64-72.
[21] Wilcox R.R. and Keselman H.J., “Modern robust data analysis methods: Measures of central tendency,” Psychological Methods, vol.8(3), pp.254-274.