現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:球形金奈米粒子的兩色現象研究 [以論文名稱查詢館藏系統]
論文英文名稱:Study of dichroic behavior of spherical gold nanoparticle [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:生化與生醫工程研究所
畢業學年度:102
出版年度:103
中文姓名:蔡尚廷
英文姓名:Shang-ting Tsai
研究生學號:101688001
學位類別:碩士
語文別:中文
口試日期:2014-07-15
論文頁數:95
指導教授中文名:侯劭毅
指導教授英文名:Shao-Yi Hou
口試委員中文名:黃志宏;鍾仁傑;王勝仕
口試委員英文名:Chih-Hung Huang;Ren-Jei Chung;Steven S.-S. Wang
中文關鍵詞:金奈米粒子雙色現象反射透射
英文關鍵詞:gold nanoparticleDichroic behaviortransmittedreflected
論文中文摘要:一般認為球形金奈米粒子為紅色,吸收峰在 520 nm 左右,當其聚集時會呈現藍紫色,吸收峰會出現紅移,在一些研究中指出形狀及大小不同時,顏色及吸收峰也會有所變化,但雙色現象卻少有人提起。
本研究將粒徑 13.5 nm 的金奈米粒子做為種子,加入四氯金酸溶液中,利用超音波在水浴70℃中進行震盪,於四氯金酸在檸檬酸鈉缺乏的情況下還原,產生雙色現象的金奈米粒子,即反射光與透射光顏色不同的金奈米粒子。再使用穿透式電子顯微鏡(Transmission electron microscopy, TEM)探討形狀及大小與此現象之關聯性,以及分光光度計(spectrophotometer)量測吸收峰之變化情形。
結果顯示雙色現象產生時,吸收峰會略有紅移。在典型的金奈米粒子聚集實驗中,也有紅移現象,但沒有產生雙色現象。不過TEM 的結果顯示,本方法所得之雙色金奈米粒子有輕微的聚集,故我們難以判斷此紅移現象的成因。在TEM 的觀察中,在檸檬酸鈉缺乏下產生之圓形或多邊形金奈米粒子,皆有雙色現象的產生。本研究利用12-mercaptododecanoic acid(12-MDA) 、N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride(EDC)及N-Hydroxysuccinimide(NHS),使雙色金奈米粒子聚集,發現雙色現象有明顯變弱,透射光從紅色變為藍紫色。但是將聚集後的雙色金奈米粒子及一般金奈米粒子,加到四氯金酸溶液中再次長晶,發現雙色現象更為明顯。所以本研究認為,是四氯金酸在檸檬酸鈉缺乏的狀況下還原所導致。
論文英文摘要:Typically, the color of spherical gold nanoparticles and aggregated nanogold is red and bluish purple, respectively. In this study, dichroic and spherical nanogold was synthesized using a seeding growth method under sodium citrate insufficiency in an aqueous solution. This particular nanogold solution is orange in reflected light and red in transmitted light. With particle assembling, the
solution is fainter orange in reflected light, but purple or blue in transmitted light. The current theory for optical properties of gold nanoparticles does not fit the
dichroic behaviors of gold nanoparticles. To the best of our knowing, this is the first study to report how the nanogold is synthesized affects the behavior of the
nanogold.
論文目次:摘 要 ..................................................................................................................... I
ABSTRACT ........................................................................................................... III
誌謝 ...................................................................................................................... IV
目錄 ........................................................................................................................ V
圖目錄 .................................................................................................................. IX
表目錄 ................................................................................................................. XII
第一章緒論 ......................................................................................................... 1
1.1 前言 ................................................................................................... 1
1.2 研究目的 ........................................................................................... 2
第二章研究背景與實驗原理 ............................................................................. 3
2.1 奈米粒子在玻璃中的雙色現象 ....................................................... 3
2.1.1 雙色現象 ........................................................................................ 3
2.1.2 Lycurgus Cup .................................................................................. 3
2.1.3 近代玻璃中的奈米粒子 ................................................................ 4
2.2 金奈米粒子 ....................................................................................... 8
2.2.1 金奈米粒子的特性 ........................................................................ 8
2.2.1.1 體積效應 ............................................................................. 9
2.2.1.2 量子侷限效應 ..................................................................... 9
2.2.1.3 表面積效應 ....................................................................... 10
2.2.2 金奈米粒子的光學特性 .............................................................. 10
2.2.2.1 尺寸效應 ........................................................................... 11
2.2.2.2 形狀效應 ........................................................................... 12
2.2.2.3 聚集效應 ........................................................................... 13
2.3 光學的反射與透射現象 ................................................................. 15
2.3.1 反射現象 ...................................................................................... 15
2.3.2 透射現象 ...................................................................................... 16
2.4 金屬奈米粒子製成介紹 ................................................................. 16
2.4.1 雷射消溶法(laserablation method) ......................................... 16
2.4.2 金屬氣相合成法(metal vapor synthesis method) ................... 17
2.4.2.1 氣液固生長法(Vapor Liquid Solid Growth) ................ 17
2.4.3 化學還原法(chemical reduction method) ............................... 18
2.4.3.1 自由空間中的化學還原法 ............................................... 18
2.4.3.2 侷限空間中的化學還原法 ............................................... 20
2.5 儀器原理 ......................................................................................... 21
2.5.1 超音波洗淨機(ultrasonic cleaner) ............................................... 21
2.5.2 分光光度計(spectrophotometer) .................................................. 22
2.5.3 數位式照度計(Digital Lightmeter) .............................................. 23
2.5.4 穿透式電子顯微鏡 ...................................................................... 23
2.5.5 單角度動態/靜態光散射儀(single angle of dynamic/static light
scattering) ............................................................................. 25
第三章實驗方法與步驟 ................................................................................... 27
3.1 實驗架構 ......................................................................................... 27
3.2 實驗方法 ......................................................................................... 29
3.2.1 製備種子 ...................................................................................... 29
3.2.1.1 製備紅色金奈米種子 ....................................................... 29
3.2.1.2 製備黑色金奈米種子 ....................................................... 29
3.2.1.3 購買金奈米粒子 ............................................................... 29
3.2.2 種晶法產生雙色金奈米粒子實驗步驟 ...................................... 30
3.2.2.1 種晶法產生雙色金奈米粒子實驗步驟 ........................... 30
3.2.2.2 雙色金奈米粒子聚集後再長晶產實驗步驟 ................... 31
3.2.2.3 將種子聚集後再長晶實驗步驟 ....................................... 32
3.2.3 一般金奈米製程加入少許的檸檬酸鈉還原四氯金酸實驗步驟
.............................................................................................. 33
3.2.4 一般製成金奈米粒子實驗步驟 .................................................. 33
3.2.5 反射率光譜之儀器原理與參數設定 ......................................... 34
3.2.6 TEM 樣品製備方法 ..................................................................... 40
3.2.7 ImageJ 參數設定 ......................................................................... 40
3.2.8 拍照方法 ...................................................................................... 41
3.2.8.1 反射光 ............................................................................... 41
3.2.8.2 透射光 ............................................................................... 41
3.3 實驗藥品與器材 ............................................................................. 43
3.3.1 實驗藥品 ...................................................................................... 43
3.3.2 實驗器材 ...................................................................................... 44
第四章結果與討論 ........................................................................................... 45
4.1 種晶法產生雙色金奈米粒子以及聚集後再長晶實驗結果 ......... 45
4.1.1 種晶法產生雙色金奈米粒子 ...................................................... 45
4.1.2 使雙色金奈米粒子聚集 .............................................................. 49
4.2 金奈米粒子聚集後加入少許的還原劑再長晶 ............................. 52
4.2.1 雙色金奈米粒子聚集後再長晶 .................................................. 52
4.2.2 一般金奈米粒子聚集後再長晶 .................................................. 55
4.3 一般金奈米製程加入少許的檸檬酸鈉實驗結果 ......................... 58
4.4 反射率光譜 .................................................................................... 62
4.5 討論 ................................................................................................. 70
第五章結論 ....................................................................................................... 72
參考文獻 ............................................................................................................... 73
附錄 ............................................................................................................... 80
附錄 1 一般製成的金奈米粒子TEM 圖............................................ 80
附錄 2 種晶法產生雙色金奈米粒子TEM 圖.................................... 81
附錄 3 鹽類還原法還原的雙色金奈米粒子之反射率 ...................... 87
附錄3.1 反射率 .................................................................................... 87
附錄3.2 相對反射率(相對於400nm 波長的反射率) ......................... 88
附錄3.3 相對反射率之比值(以一般35nm 金奈米粒子的相對反射率
為基準) ................................................................................. 89
附錄 4 雙色金奈米粒子DLS 所量測粒徑與TEM 計算的粒徑比較
數據 ......................................................................................... 90
附錄 5 種晶法還原過程使用磁石攪拌之TEM 圖以及照片(水浴72
℃) ........................................................................................... 92
附錄 6 折射、繞射定義 ..................................................................... 93
附錄 7 各色光波長表 ......................................................................... 94
附錄 8 藍光加黃光以及紅光加黃光的照片 ..................................... 95
論文參考文獻:1. Freestone, I., et al., "The Lycurgus Cup - A Roman nanotechnology," Gold
Bulletin, 40, 4, 2007, 270-277.
2. Schreiber, H.D., M.A. Stone, and A.M. Swink, "Novel red-blue dichroic
glass containing copper nanocrystals," Journal of Non-Crystalline Solids,
352, 6-7, 2006, 534-538.
3. Som, T. and B. Karmakar, "Surface Plasmon Resonance and Enhanced
Fluorescence Application of Single-step Synthesized Elliptical Nano
Gold-embedded Antimony Glass Dichroic Nanocomposites," Plasmonics,
5, 2, 2010, 149-159.
4. Singh, S.P. and B. Karmakar, "Single-Step Synthesis and Surface
Plasmons of Bismuth-Coated Spherical to Hexagonal Silver Nanoparticles
in Dichroic Ag:Bismuth Glass Nanocomposites," Plasmonics, 6, 3, 2011,
457-467.
5. Bradley, J.S., The Chemistry of Transition Metal Colloids, New York:
VCH Publishers, 1994, 459-538
6. Daniel, M.C. and D. Astruc, "Gold nanoparticles: Assembly,
supramolecular chemistry, quantum-size-related properties, and
applications toward biology, catalysis, and nanotechnology," Chemical
Reviews, 104, 1, 2004, 293-346.
7. Frens, G., "Controlled nucleation for the regulation of the particle size in
monodisperse gold suspensions," Nature Physical Science, 241, 1, 1973,
20.
8. 佘瑞琳 , et al.,「金奈米粒子之合成及鑑定-統整型化學實驗實例」,
化學教育, 62, 4, 2004, 563-568。
9. Yang, M.X., et al., "Mechanistic investigation into the spontaneous linear
assembly of gold nanospheres," Physical Chemistry Chemical Physics, 12,
38, 2010, 11850-11860.
10. Wang, B., et al., "Perylene probe induced gold nanoparticle aggregation,"
Journal of Materials Chemistry, 21, 13, 2011, 4821-4826.
11. Sau, T.K., et al., "Size controlled synthesis of gold nanoparticles using
photochemically prepared seed particles," Journal of Nanoparticle
Research, 3, 4, 2001, 257-261.
12. Perez-Juste, J., et al., "Gold nanorods: Synthesis, characterization and
applications," Coordination Chemistry Reviews, 249, 17-18, 2005,
1870-1901.
13. Goia, D.V. and E. Matijevic, "Tailoring the particle size of monodispersed
colloidal gold," Colloids and Surfaces a-Physicochemical and
Engineering Aspects, 146, 1-3, 1999, 139-152.
14. Elghanian, R., et al., "Selective colorimetric detection of polynucleotides
based on the distance-dependent optical properties of gold nanoparticles,"
Science, 277, 5329, 1997, 1078-1081.
15. Park, S.Y., et al., "DNA-programmable nanoparticle crystallization,"
Nature, 451, 7178, 2008, 553-556.
16. 張家豪, 多邊形金奈米粒子之多色現象研究, 碩士, 國立台北科技
大學, 臺北, 102。
17. Edgar, A., "Strong red-light scattering from colloidal copper in ZBLAN
fluoride glass," Journal of Non-Crystalline Solids, 220, 1, 1997, 78-84.
18. Dias, E.A., The Photophysics of CdSe/ZnS/CdSe Core/Barrier/Shell
Nanocrystals: Light Harvesting, Single Nanocrystal Blinking, and Optical
Gain, Doctor of Philosophy, McGill University, Canada, 2011
19. Jana, N.R., L. Gearheart, and C.J. Murphy, "Seeding growth for size
control of 5-40 nm diameter gold nanoparticles," Langmuir, 17, 22, 2001,
6782-6786.
20. Njoki, P.N., et al., "Size correlation of optical and spectroscopic properties
for gold nanoparticles," Journal of Physical Chemistry C, 111, 40, 2007,
14664-14669.
21. Stewart, M.E., et al., "Nanostructured plasmonic sensors," Chemical
Reviews, 108, 2, 2008, 494-521.
22. Huang, X. and M.A. El-Sayed, "Gold nanoparticles: Optical properties and
implementations in cancer diagnosis and photothermal therapy," Journal
of Advanced Research, 1, 1, 2010, 13-28.
23. Westcott, S.L., et al., "Formation and adsorption of clusters of gold
nanoparticles onto functionalized silica nanoparticle surfaces," Langmuir,
14, 19, 1998, 5396-5401.
24. Buffat, P. and J.-P. Borel, "Size effect on the melting temperature of gold
partlclese," Physical Review A, 13, 6, 1976, 2287.
25. 邱國斌 and 蔡定平,「金屬表面電漿簡介」, 物理雙月刊, 28, 2,
2006, 472-485。
26. Nanda, K.K., et al., "Higher surface energy of free nanoparticles,"
Physical Review Letters, 91, 10, 2003, 1061021-1021024.
27. Kelly, K.L., et al., "The optical properties of metal nanoparticles: The
influence of size, shape, and dielectric environment," Journal of Physical Chemistry B, 107, 3, 2003, 668-677.
28. 葉晨聖, et al., 生醫奈米技術, 台南: 生醫奈米科技教學資源中心,
2007, 3-17。
29. Link, S., M.B. Mohamed, and M.A. El-Sayed, "Simulation of the optical
absorption spectra of gold nanorods as a function of their aspect ratio and
the effect of the medium dielectric constant," Journal of Physical
Chemistry B, 103, 16, 1999, 3073-3077.
30. Sau, T.K. and C.J. Murphy, "Room temperature, high-yield synthesis of
multiple shapes of gold nanoparticles in aqueous solution," Journal of the
American Chemical Society, 126, 28, 2004, 8648-8649.
31. Ah, C.S., et al., "Size-controlled synthesis of machinable single crystalline
gold nanoplates," Chemistry of Materials, 17, 22, 2005, 5558-5561.
32. Jana, N.R., "Gram-scale synthesis of soluble, near-monodisperse gold
nanorods and other anisotropic nanoparticles," Small, 1, 8-9, 2005,
875-882.
33. Kumar, D.V.R., A.A. Kulkarni, and B.L.V. Prasad, "Synthesis of triangular
gold nanoplates: Role of bromide ion and temperature," Colloids and
Surfaces a-Physicochemical and Engineering Aspects, 422, 2013,
181-190.
34. Feynman, R.P., QED: The strange theory of light and matter, USA:
Princeton Science Library, 1985, 36-76
35. Maciulevičius, M., et al., "On-line characterization of gold nanoparticles
generated by laser ablation in liquids," Physics Procedia, 41, 1, 2013,
531-538.
36. Mafune, F., et al., "Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation," Journal of Physical
Chemistry B, 104, 35, 2000, 8333-8337.
37. Mafune, F., et al., "Formation of gold nanoparticles by laser ablation in
aqueous solution of surfactant," Journal of Physical Chemistry B, 105, 22,
2001, 5114-5120.
38. Chen, C.C. and C.C. Yeh, "Large-scale catalytic synthesis of crystalline
gallium nitride nanowires," Advanced Materials, 12, 10, 2000, 738-+.
39. Jiangtao Hu, Teri Wang Odom, and Charles M. Lieber, "Chemistry and
Physics in One Dimension: Synthesis and Properties of Nanowires and
Nanotubes," Acc. Chem. Res, 32, 5, 1999, 435-445.
40. Li, Y.M., et al., "Growth of single-walled carbon nanotubes from discrete
catalytic nanoparticles of various sizes," Journal of Physical Chemistry B,
105, 46, 2001, 11424-11431.
41. Rucareanu, S., V.J. Gandubert, and R.B. Lennox,
"4-(N,N-dimethylamino)pyridine-protected Au nanoparticles: Versatile
precursors for water- and organic-soluble gold nanoparticles," Chemistry
of Materials, 18, 19, 2006, 4674-4680.
42. Guo, L., et al., "Iron nanoparticles: Synthesis and applications in surface
enhanced Raman scattering and electrocatalysis," Physical Chemistry
Chemical Physics, 3, 9, 2001, 1661-1665.
43. Park, S.J., et al., "Synthesis and magnetic studies of uniform iron nanorods
and nanospheres," Journal of the American Chemical Society, 122, 35,
2000, 8581-8582.
44. Puntes, V.F., K.M. Krishnan, and A.P. Alivisatos, "Colloidal nanocrystal
shape and size control: The case of cobalt," Science, 291, 5511, 2001, 2115-2117.
45. Reetz, M.T. and W. Helbig, "Size-Selective Synthesis of Nanostructured
Transition Metal Clusters," J. Am. Chem. Soc., 116, 16, 1994, 7401-7402.
46. Mizukoshi, Y., et al., "Sonochemical preparation of bimetallic
nanoparticles of gold/palladium in aqueous solution," Journal of Physical
Chemistry B, 101, 36, 1997, 7033-7037.
47. Jana, N.R., L. Gearheart, and C.J. Murphy, "Evidence for seed-mediated
nucleation in the chemical reduction of gold salts to gold nanoparticles,"
Chemistry of Materials, 13, 7, 2001, 2313-2322.
48. Yu, H., et al., "Heterogeneous seeded growth: A potentially general
synthesis of monodisperse metallic nanoparticles," Journal of the
American Chemical Society, 123, 37, 2001, 9198-9199.
49. Pileni, M.P., "Nanosized particles made in colloidal assemblies," Langmuir,
13, 13, 1997, 3266-3276.
50. Ohde, H., F. Hunt, and C.M. Wai, "Synthesis of silver and copper
nanoparticles in a water-in-supercritical-carbon dioxide microemulsion,"
Chemistry of Materials, 13, 11, 2001, 4130-4135.
51. Niu, Y.H. and R.M. Crooks, "Dendrimer-encapsulated metal nanoparticles
and their applications to catalysis," Comptes Rendus Chimie, 6, 8-10, 2003,
1049-1059.
52. Crooks, R.M., et al., "Dendrimer-encapsulated metal nanoparticles:
Synthesis, characterization, and applications to catalysis," Accounts of
Chemical Research, 34, 3, 2001, 181-190.
53. Azar, L., "Cavitation in Ultrasonic Cleaning and Cell Disruption,"
Controlled Environments, 2009, 14-17.
54. Tian, Y., Optical Properties of Single-walled Carbon Nanotubes and
Nanobuds, Japan: School of Science, 2012, 3-15
55. 李孝文, 光纖通信能力本位訓練教材, 臺北: 中華民國職業訓練研
究發展中心, 2001, 10-11。
56. Fultz, B. and J.M. Howe, The TEM and its Optics, New York: Springer,
2004, 61-118
57. Williams, D.B. and C.B. Carter, Transmission Electron Microscopy A
Textbook for Materials Science, USA: Springer, 2009, 3-37
58. Kozina, A., Crystallization Kinetics and Viscoelastic Propertise of Colloid
Binary Mixtures with Depletion attraction, Inaugural Dissertation,
Fahnenbergplatz, Chekhov, 2009
59. Agilent Cary UV-Vis-NIR Spectrophotometer, United States: Agilent
Technologies, 2011,
60. Agilent Cary WinUV Help, United States: Agilent Technologies, 2011,
61. Technologies, A., Cary WinUV 中文操作手冊, 桃園: 台灣安捷倫
科技股份有限公司, 2002,
62. Gaspar, D., et al., "Influence of the layer thickness in plasmonic gold
nanoparticles produced by thermal evaporation," Sci Rep, 3, 2013, 1469.
論文全文使用權限:同意授權於2017-08-28起公開