現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:LSGM-SDC複合電解質微結構及電性之探討 [以論文名稱查詢館藏系統]
論文英文名稱:The microstructure and electrical properties of LSGM and SDC composite electrolyte [以論文名稱查詢館藏系統]
院校名稱:國立臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:103
畢業學期:第一學期
中文姓名:李明晉
英文姓名:Ming-Jin Lee
研究生學號:101788010
學位類別:碩士
指導教授中文名:吳玉娟
口試委員中文名:盧宏陽;許志雄
中文關鍵詞:固態電解質、複合電解質、固態反應法、導電率
英文關鍵詞:Solid state electrolyte, Composite electrolyte, Solid state reaction method, Conductivity
論文中文摘要:La1-xSrxGa1-yMgyO3-為非常熱門的中溫型固態電解質,在中溫範圍下,導電率約可達0.1 S/cm以上,導電能力非常好。Ce1-xSmxO2-的化學穩定性佳,故為中溫型固態電解質的另一選擇。本實驗則使用此兩電解質,La0.85Sr0.15Ga0.8Mg0.2O2.825 (LSGM)與Ce0.85Sm0.15O1.925 (SDC),以固態反應法製成複合電解質(100-x wt%) LSGM + (x wt%) SDC (x = 0、2、5、7、10)。試片在1450°C下燒結5小時後形成單一LSGM立方相與單一SDC立方螢石相兩者之混合相。SDC的添加使LSGM相的晶格常數略為下降,平均晶粒尺寸也下降。SDC的添加對於燒結行為有一定的幫助,複合電解質試片的收縮速率與緻密化速率皆大於純LSGM試片,由此可推測,SDC的添加也會使試片的燒結溫度些微的下降。本實驗中,LSGM試片在800°C下的導電率為0.1509 S/cm。複合電解質中電性最佳者為95L05S,導電率高達0.1381 S/cm。
論文英文摘要:La1-xSrxGa1-yMgyO3- is a promising candidate for the solid state electrolyte. The conductivity of La1-xSrxGa1-yMgyO3- is larger than 0.1 S/cm in the intermediate temperature range. Ce1-xSmxO2- is also an choice for intermediate temperature electrolyte due to its chemical stability.
The La0.85Sr0.15Ga0.8Mg0.2O2.825 (LSGM) and Ce0.85Sm0.15O1.925 (SDC) were mixed to form the composite electrolyte in this study. (100-x) wt% LSGM + (x) wt% SDC (x = 0, 2, 5, 7, 10) were prepared by solid state reaction method. After sintering at 1450°C for 5 hours, the specimens show the mixture phases of LSGM and SDC. The lattice parameter and average grain size of LSGM phase slightly decreased with increasing the content of SDC.
The addition of SDC seems like to enhance the sintering behavior. The shrinkage rate and densification rate of composite ceramics are greater than the single LSGM phase. The results show that the melting point of composite is lower than the single LSGM phase.
The conductivity of LSGM reached 0.1509 S/cm, and the conductivity of composite specimen (95L05S) reached 0.1381 S/cm.
論文目次:摘要 i
ABSTRACT ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 實驗動機 2
1.3 實驗目的 2
第二章 文獻回顧 3
2.1 固態氧化物燃料電池簡介 3
2.2 固態電解質簡介 5
第三章 實驗方法及步驟 11
3.1 試片製備 13
3.1.1 複合電解質製備 13
3.1.2 全電池試片製備參數 17
3.2 X光繞射分析 17
3.3 掃描式電子顯微鏡分析 18
3.4 熱機械性質分析 19
3.5 阿基米德相對密度分析 19
3.6 拉曼光譜分析 21
3.7 電解質電性量測分析 21
3.8 全電池電性分析 22
第四章 結果與討論 24
4.1 XRD分析 24
4.1.1 實驗一的試片燒結1450°C/5 hrs 24
4.1.2 實驗一的試片燒結1500°C/5 hrs 35
4.1.3 實驗二的試片燒結1450°C/5 hrs 37
4.2 SEM分析 39
4.3 燒結行為分析 49
4.4 阿基米德-相對密度分析 55
4.5 拉曼光譜分析 57
4.6 DC電性量測及分析 58
4.7 交流阻抗分析 62
4.8 熱膨脹分析 80
4.9 全電池量測分析 82
第五章 結論 97
參考文獻 99
附錄 104
論文參考文獻:1. 林駿杰,摻雜異價離子(Sm3+、Mg2+、Ca2+、Sr2+、Ba2+)之CeO2基電解質的微結構和性質之分析,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2012。
2. 李明澤,固態電解質La1-xSrxGa1-yMgyO3-之電性及微觀結構分析,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2011。
3. 衣寶廉,燃料電池─原理與應用,臺北:五南圖書出版公司,2005。
4. 毛宗強,燃料電池,北京:化學工業出版社,2005。
5. D. Xu, X. Liu, D. Wang, G. Yi, Y. Gao, D. Zhang, W. Su, “Fabrication and characterization of SDC–LSGM composite electrolytes material in IT-SOFCs,” Journal of Alloys and Compounds, 429, 2007, 292–295.
6. M. Li, Y. Zhang, M. An, Z. Lu ̈, X. Huang, J. Xiao, B. Wei, X. Zhu, W. Su, “Synthesis and characterization of La0.9Sr0.1Ga0.8Mg0.2O3- intermediate-temperature electrolyte using conventional solid state reaction,” Journal of Power Sources, 218, 2012, 233–236.
7. C. Oncel, B. Ozkaya, M. A. Gulgun, “X-ray single phase LSGM at 1350°C,” Journal of European Ceramic Society, 27, 2007, 599–604.
8. S. Li, Z. Li, B. Bergman, “Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells,” Journal of Alloys and Compounds, 492, 2010, 392–395.
9. G. Hao, X. Liu, H. Wang, H. Be, L. Pei, W, Su, “Performance of Ce0.85Sm0.15O1.9–La0.9Sr0.1Ga0.8Mg0.2O2.85 composite electrolytes for intermediate-temperature solid oxide fuel cells,” Solid State Ionics, 255, 2012, 81–84.
10. K. Singh, S. A. Acharya, S. S. Bhoga, “Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and intermediate temperature ionic conductivity,” Ionics, 13, 2007, 429–434.
11. M. Morales, J.J. Roa, J. Tartaj, M. Segarra, “Performance and short-term stability of single-chamber solid oxide fuel cells based on La0.9Sr0.1Ga0.8Mg0.2O3- electrolyte,” Journal of Power Sources, 216, 2012, 417–424.
12. T. Liu, Y. Li, John B. Goodenough, “Sr0.7Ho0.3CoO3- as a potential cathode material for intermediate-temperature solid oxide fuel cells,” Journal of Power Sources, 199, 2012, 161–164.
13. P. Zhang, G. Guan, D. S. Khaerudini, X. Hao, M. Han, Y. Kasai, K. Sasagawa, A. Abudula, “Properties of A–site nonstoichiometry (Pr0.4)xSr0.6Co0.2Fe0.7Nb0.1O3-δ (0.9 ≦ x ≦ 1.1) as symmetrical electrode material for solid oxide fuel cells,” Journal of Power Sources, 248, 2014, 163–171.
14. B. He, Z. Wang, L. Zhao, X. Pan, X. Wu, C. Xia, “Ti–doped molybdenum-based perovskites as anodes for solid oxide fuel cells,” Journal of Power Sources, 241, 2013, 627–633.
15. M. J. Escudero, A. Fuerte, L. Daza, “La2NiO4+ potential cathode material on La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte for intermediate temperature solid oxide fuel cell,” Journal of Power Sources, 196, 2011, 7245–7250.
16. J. Xie, Y. W. Ju, T. Ishihara, “Influence of impurities on the stability of La0.6Sr0.4Co0.2Fe0.8O3 cathode for solid oxide fuel cells,” Solid State Ionics, 249–250, 2013, 77–183.
17. B.Y. Yoon, J. Bae, “Characteristics of nano La0.6Sr0.4Co0.2Fe0.8O3--infiltrated La0.8Sr0.2Ga0.8Mg0.2O3- scaffold cathode for enhanced oxygen reduction,” International Journal of Hydrogen Energy, 38, 2013, 13399–13407.
18. J. J. Choi, J. H. Choi, J. Ryu, B. D. Hahn, J. W. Kim, C. W. Ahn, W. H. Yoon, D. S. Park, ”Low temperature preparation and characterization of (La,Sr)(Ga,Mg)O3- electrolyte-based solid oxide fuel cells on Ni-support by aerosol deposition,” Thin Solid Films, 546, 2013, 418–422.
19. P. Datta, P. Majewski, F. Aldinger, “Structural studies of Sr- and Mg-doped LaGaO3,” Journal of Alloys and Compounds, 438, 2007, 232–237.
20. Y. C. Wu, M. Z. Lee, “Properties and microstructural analysis of La1-xSrxGa1-yMgyO3- solid electrolyte ceramic,” Ceramics International, 39, 2013, 9331–9341.
21. X. Zhang, S. Ohara, R. Maric, H. Okawa, T. Fukui, H. Yoshida, T. Inagaki, Kazuhiro Miura, “Interface reactions in the NiO–SDC–LSGM system,” Solid State Ionics, 133, 2000, 153–160.
22. A. Naoumidis, A. Ahmad-Khanlou, Z. Samardzija, D. Kolar, “Chemical interaction and diffusion on interface cathode/electrolyte of SOFC,” Fresenius J Anal Chem, 1999, 365, 277–281.
23. W. D. Callister, Jr., Materials Science and Engineering: an introduction, Asia, Wiley, Seven Edition.
24. RD Shannon: “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.” Acta Crystallogragh 1976, A32, 751–767.
25. V.P. Gorelov, D.I. Bronin, Ju. V. Sokolova, H. Na ̈fe, F. Aldinger, “The effect of doping and processing conditions on properties of La1-xSrxGa1-yMgyO3-,” Journal of European Ceramic Society, 21, 2001, 2311–2317.
26. T.S. Zhang, L.B. Kong, X.C. Song, Z.H. Du, W.Q. Xu, S. Li, “Densification behaviour and sintering mechanisms of Cu- or Co-doped SnO2: A comparative study,” Acta Materialia, 62, 2014, 81–88.
27. X. Zhao, X. Li, N. Xu, K. Huang, “Beneficial effects of Mg-excess in La1-xSrxGa1-yMgy+zO3- as solid electrolyte,” Solid State Ionics, 214, 2012, 56–61.
28. E. Barsoukov, J. R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications, the United States of America: John Wiley & Sons, 2005, pp. 292–293.
29.  L. Zhang, J. Xiao, Y. Xie, Y. Tang, J. Liu, M. Liu, “Behavior of strontium- and magnesium-doped gallate electrolyte in direct carbon solid oxide fuel cells,” Journal of Alloys and Compounds, 608, 2014, 272–277.
30. V. Thangadurai, W. Weppner, “Studies on electrical properties of La0.8Sr0.2Ga0.8Mg0.2O2.80 (LSGM) and LSGM–SrSn1−xFexO3 (x = 0.8; 0.9) composites and their chemical reactivity,” Electrochimica Acta, 50, 2005, 1871–1877.
31. R. C. Biswal, K. Biswas, “Synthesis and characterization of Sr2+ and Mg2+ doped LaGaO3 by co-precipitation method followed by hydrothermal treatment for solid oxide fuel cell applications,” Journal of the European Ceramic Society, 33, 2013, 3053–3058.
32. Raghvendra, R. K. Singh, P. Singh, “Synthesis of La0.9Sr0.1Ga0.8Mg0.2O3- electrolyte via ethylene glycol route and its characterizations for IT-SOFC,” Ceramics International, 40, 2014, 7177–7184.
33. N. Singh, N. K. Singh, D. Kumar, O. Parkash, “Effect of co-doping of Mg and La on conductivity of ceria,” Journal of Alloys and Compounds, 519, 2012, 129–135.
34. 王曉紅,黃宏,燃料電池基礎,台北:全華圖書股份有限公司,2008。
35. W. S. Hsieh, P. Lin, S. F. Wang, “Effects of cathode materials on the characteristics of electrolyte supported micro-tubular solid oxide fuel cells,” Journal of Power Sources, 253, 2014, 35–40.
論文全文使用權限:不同意授權