現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:染料敏化奈米太陽能電池之光電極製作與影響效率分析 [以論文名稱查詢館藏系統]
論文英文名稱:Fabrication of Photoelectrode for Dye-sensitized Nano Solar Cells and their Efficiency Analysis [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:製造科技研究所
出版年度:97
中文姓名:林俊仁
英文姓名:Jun-Ren Lin
研究生學號:95568041
學位類別:碩士
語文別:中文
口試日期:2008-07-25
論文頁數:90
指導教授中文名:丁振卿
指導教授英文名:Chen-Ching Ting
口試委員中文名:鍾清枝;蔡明善
中文關鍵詞:太陽能電池染料TiO2噴霧透光率溫度
英文關鍵詞:Solar CellsDyeTiO2SprinklingTransmittanceTemperature
論文中文摘要:本論文主要針對染料敏化奈米太陽能電池DSSC的奈米二氧化鈦多孔膜光電極進行製程研究與影響DSSC光電效率分析。光電極製作技術主要有塗佈法與噴霧法兩種,而探討的問題有燒結溫度與時間,還有多孔膜之透光率等對光電轉換效率的影響。此外,本論文還對溫度造成DSSC之光電轉換效率影響進行實驗量測,及探討電解質層之最佳厚度。實驗中自行製作噴霧箱,以多次噴霧的方式製作TiO2多孔膜,取代傳統的刮刀塗佈法,達到快速製作及容易控制膜厚或膜之透光率的目的,當藉由噴霧法所製作的奈米TiO2多孔膜燒結溫度越高時,其光電轉換效率也越好,燒結時間越長,DSSC光電轉換效率越佳,整體之效果,噴霧塗佈法有較優於刮刀塗佈法的效果。另外,以噴霧塗佈製作光電極時,在約50\%的透光率有最佳效率。在DSSC受溫度影響研究上,本研究工作自行架設一以水控溫之恆溫系統以控制太陽能電池溫度,控制量測溫度在約5℃到80℃之間,恆溫效果達小於1℃的溫度變動,由研究結果顯示,當DSSC的溫度低時,其輸出功率則越高。在電解質方面,隨著厚度的下降,光電轉換效率有上升的趨勢,當電解質厚度為0.1mm時有最佳光電轉換效率。
論文英文摘要:The research is focused on fabrication of the hotoelectrode
with TiO2 nanoporous film for dye-sensitized nano solar cell(DSSC) and the photoelectric conversion efficiency analysis of DSSCs. The applied coating techniques of photoelectrode are doctor blade and sprinkling. The influence heating temperature and duration as well as transmittance of the photoelectrode were discussed in this work. Moreover, the study for the influence of temperature and thickness of the electrolyte layer with the DSSCs were also carried out. In the experiment, the TiO2 nanoporous films were made dy using multiple sprinkling technique in the home-made sprinkling box instead of the doctor blade method. The multiple sprinkling technique can quickly produce the TiO2 film and easily control its thickness, i.e. transmittance. The multiple sprinkling technique made TiO2 films receive the result that the higher heating temperature and the longer heating duration, the better photoelectric conversion efficiency . The experimental data show that the sprinkling technique is better than the doctor blade and the DSSC integrated with the photoelectrode ca. 50% transmittance made by the sprinkling technique reaches the best result. A constant temperature water tank with a smaller than 1℃ deviation and the temperature range between 5℃ and 80℃ was setup
for measurements of the temperature influence with DSSCs. The result shows that the lower temperature of DSSCs, the larger output power of DSSCs. The DSSCs with 0.1mm thickness of the electrolyte layer reaches the best photoelectric conversion effect.
論文目次:中文摘要 I
英文摘要 III
誌謝 IV
目錄 VI
表目錄 VII
圖目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.3 研究目的 6
第二章 基礎理論 7
2.1 光化與光電效應 7
2.1.1 半導體太陽能電池 8
2.1.2 染料敏化奈米太陽能電池 11
2.1.3 太陽能電池之光電轉換效率 13
2.2 奈米TiO2多孔膜應用 14
2.2.1 基礎奈米科技 16
2.2.2 奈米粉末分散原理 17
2.2.3 超音波洗淨機原理 18
2.2.4 燒結原理 18
2.3 熱電與電熱效應 19
2.4 光輻射能與光亮度 20
第三章 實驗架設 22
3.1 染料敏化奈米太陽能電池製作 22
3.1.1 光電極製作 22
3.1.1.1 奈米TiO2溶液製作 23
3.1.1.2 燒結爐製作 24
3.1.1.3 噴霧裝置架設 25
3.1.1.4 染料調配 27
3.1.2 反電極製作 27
3.1.3 電解質調配 28
3.1.4 電池封裝 29
3.2 光電轉換效率量測 33
3.2.1 I-V曲線量測架設 33
3.2.2 光電極透光率量測架設 35
3.2.3 I-V曲線量測數據擷取 37
3.3 太陽能電池受溫度影響量測 38
3.3.1 太陽能電池之溫度控制 38
3.3.2 太陽能電池之防水結構架設 39
第四章 結果與討論 41
4.1 ITO玻璃之導電層阻抗受熱影響分析 41
4.2 光電極之奈米TiO2多孔膜燒結溫度影響分析 43
4.3 光電極之奈米TiO2多孔膜燒結時間影響分析 47
4.4 光電極之透光率影響效率分析 50
4.5 光電極之噴霧製程與塗佈方法比較分析 61
4.6 DSSC之溫度影響效率分析 65
4.7 比較單晶矽太陽能電池受溫度影響 73
4.8 電解質厚度對效率影響分析 76
第五章 結論 80
第六章 未來展望 82
參考文獻 83
論文參考文獻:[1] Energy Information Administration, International energy outlook 2007, Washington:
U.S. Department of Energy, 2007, pp. 1-4.
[2]法蘭茲.阿爾特著,王琪、唐小莉、陳仁德譯,太陽電力公司:新能源.新就業機會,台北市:新自然主義股份有限公司,2005,
第33-42頁。
[3]鍾崇燊、向曼菁,「都是溫室效應惹的禍」,科學發展,第三百八十八期,2005,第67-71頁。
[4]艾爾.高爾著,張瓊懿、欒欣譯,不願面對的真相,台北市:商週出版 城邦文化事業股份有限公司,2007,第42-207頁。
[5]黃啟峰,「二氧化碳與地球暖化」, 科學發展,第四百一十三期,2007,第6-12頁。
[6] M. Gratzel, ”Photoelectrochemical cells”,Nature, vol. 414, 2001, pp. 338-344.
[7]莊嘉琛,太陽能工程-電池篇,台北市:全華科技圖書股份有限公司,1997,第(2-1)-(4-178)頁。
[8]雷永泉,新能源材料,台北縣:新文京開發出版股份有限公司,2004,第280-381頁。
[9] R. Memming and B. Tributsch, ”Electrochemical investigations on the spectral sensitization
of gallium phosphide electrodes”,The Journal of Physical Chemistry, vol. 75,
no. 4, 1971, pp. 562-570 .
[10]蔡進譯,「超高效率太陽電池 .從愛因斯坦的光電效應談起」,物理雙月刊,27卷五期,2005,第701-719頁。
[11] B. O. Regan and M. Gratzel , ”A Low-Cost, High-Efficiency Solar Cells Based on
Dye-Sensitized Colloidal TiO2 Films”, Nature, vol. 353, 1991, pp. 737-740.
[12] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. M¨uller, P. Liska,N. Vlachopoulos,
and M. Gr¨atzel, ”Conversion of light to electricity by cis-X2bis(2,2J-bipyridyl-
4,4J-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-,
and SCN-) on nanocrystalline TiO2 electrodes”, Journal of the American Chemical
Society, vol. 115, 1993, pp. 6382-6390.
[13] D. R. Sahu, S. Y. Lin, and J. L. Huang , ”ZnO/Ag/ZnO multilayer films for the application
of a very low resistance transparent electrode”, Applied Surface Science, vol. 25,
2005, pp. 7509-7514.
[14] M. Rurr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and G. Enelles , ”Lowtemperature
fabrication of dye-sensitizedsolar cellsby transfer of composite porous layers”,
Nature Materials, vol. 4, 2005, pp. 607-611.
[15] Y. Li, J. Hagen, W. Schaffrath, P. Otschik, and D. Haarer, ”Titanium dioxide films for
photovoltaic cells derived from a sol-gel process”,Solar Energy Materials and Solar
Cells, vol. 56, 1999, pp. 167-174.
[16] G. P. Smestad, ”Education and solar conversion: Demonstrating electron transfer”,
Solar Energy Materials and Solar Cells, vol. 55, 1998, pp. 157-178.
[17] D. G. Tauste, I. Zumeta, E. Vigil, M. A. H. Fenollosa, X. Dom´enech, and J. A. Ayll´on,
”New low-temperature preparation method of the TiO2 porous photoelectrode for dyesensitized
solar cells using UV irradiation”,Journal of Photochemistry and Photobiology
A: Chemistry, vol. 175, 2005, pp. 165-171.
[18] T. V. Nguyen, H. C. Lee, and O. B. Yang, ”The effect of pre-thermal treatment of
TiO2 nano-particles on the performances of dye-sensitized solar cells”,Solar Energy
Materials and Solar Cells, vol. 90, 2006, pp. 967-981.
[19] M. Gomez, J. Rodrımguez, S. Tingry, A. Hagfeldt, S. E. Lindquist, and C. G. Granqvist,
”Photoelectrochemical effect in dye sensitized, sputter deposited Ti oxide films: The
role of thickness-dependent roughness and porosity”,Solar Energy Materials and Solar
Cells, vol. 59, 1999, pp. 277-287.
[20] M. Gomez, J. Rodrımguez, S. Tingry, A. Hagfeldt, S. E. Lindquist, and C. G.
Granqvist, ”Reactive sputtering deposition of photocatalytic TiO2 thin films on glass
substrates”,Materials Science and Engineering B, vol. 138, 2005, pp. 139-143.
[21] Y. M. Sung, and H. J. Kim, ”Sputter deposition and surface treatment of TiO2 films for
dye-sensitized solar cells using reactive RF plasma”,Thin Solid Films, vol. 515, 2007,
pp. 4996-4999.
[22] M. F. Hossain, S. Biswas, T. Takahashi, Y. Kubota, and A. Fujishima, ”Investigation of
sputter-deposited TiO2 thin film for the fabrication of dye-sensitized solar cells”,Thin
Solid Films, available online, 2008.
[23] R. Katoh, A. Furube, T. Yoshihara, K. Hara,G. Fujihashi, S. Takano, S. Murata, H.
Arakawa, and M. Tachiya, ”Efficiencies of electron injection from excited N3 dye into
nanocrystalline semiconductor (ZrO2,TiO2,ZnO,Nb2O5,SnO2, In2O3) films”,J. Phys.
Chem. B, vol. 108, 2004, pp. 4818-4822.
[24] N. G. Park, J. V. D. Lagemaat, and A. J. Frank, ”Comparison of Dye-Sensitized Rutileand
Anatase-Based TiO2 Solar Cells”,Journal of Physical Chemistry B, vol. 104, 2000,
pp. 8989-8994.
[25] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and G. A. Grimes, ”Use of Highly-
Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells”,Nano Letters, vol. 6,
2000, pp. 215-218.
[26] Y. Ohsaki, N. Masaki, T. Kitamura, Y.Wada, T. Okamoto, T. Sekino, K. Niihara, and S.
Yanagida, ”Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization”,
Physical Chemistry Chemical Physics, vol. 7, 2005, pp. 4157-4163.
[27] S. Ito, T. Takeuchi, T. K. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y.Wada,
and S. Yanagida, ”Conductive and Transparent Multilayer Films for Low-Temperature-
Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells”,Chemistry of
Materials, vol. 15, 2003, pp. 2824-2828.
[28] Z. S.Wang, H. Kawauchi, T. Kashima, and H. Arakawa , ”Significant influence of TiO2
photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized
solar cell”, Coordination Chemistry Reviews, vol. 248, 2004, pp. 1381-1389.
[29] S. M. Paek, H. Jung, Y. J. Lee, N. G. Park, S. J. Hwang, and J. H. Choy , ”Nanostructured
TiO2 films for dye-sensitized solar cells”, Journal of Physics and Chemistry of
Solids, vol. 67, 2006, pp. 1308-1311.
[30] K. Keis, E. Magnusson, H. Lindstr¨om, S. E. Lindquist, and A. Hagfeldt, ”A 5% efficient
photoelectrochemical solar cell based on nanostructured ZnO electrodes”, Solar Energy
Materials and Solar Cells, vol. 73, 2002, pp. 51-58.
[31] K. Keis, E. Magnusson, H. Lindstr¨om, S. E. Lindquist, and A. Hagfeldt, ”Dyesensitized
solar cells using ZnO tetrapods”, Journal of Applied Physics , vol. 103, no.
083114, 2008.
[32] M. K. Nazeeruddin, P. P´echy, and M. Gr¨atzel , ”Efficient panchromatic sensitization of
nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex
”, Chemical Communications, vol. 18, 1997, pp. 1705-1706.
[33] M. K. Nazeeruddin, P. P´echy, T. Renouard, S. M. Zakeeruddin, R. H. Baker, P. Comte,
P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi,
and M. Gr¨atzel, ”Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline
TiO2-Based Solar Cells”, J. Am. Chem., vol. 123, no. 8, 2001, pp. 1613-1624.
[34] K. Wongcharee, V. Meeyoo, and S. Chavadej , ”Dye-sensitized solar cell using natural
dyes extracted from rosella and blue pea flowers”, Solar Energy Materials and Solar
Cells , vol. 91, 2007, pp. 566-571.
[35] S. Hao, J. Wu, Y. Huang, and J. Lin, ”Natural dyes as photosensitizers for dyesensitized
solar cell”, Solar Energy, vol. 80, 2006, pp. 209-214.
[36] A. Polo and N. Y. M. Iha, ”Blue sensitizers for solar cells: Natural dyes from Calafate
and Jaboticaba”, Solar Energy Materials and Solar Cells, vol. 90, 2006, pp. 1936-1944.
[37] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, V. P. Perera, G. M. L. P.
Aponsu, and K. G. U. Wijayantha, ”Deposition of Thin Conducting Films of CuI on
Glass”, Solar Energy Materials & Solar Cells, vol. 55, 1998, pp. 283-289.
[38] P. M. Sirimanne, T. Shirata, T. Soga, and T. Jimbo, ”Charge Generation in a Dye-
Sensitized Solid-State Cell under Different Modes of Illumination”, Journal of Solid
State Chemistry, vol. 166, 2002, pp. 142-147.
[39] P.Wang, S. M. Zakeeruddin, and M. Gr¨atzel, ”Solidifying Liquid Electrolytes with Fluorine
Polymer and Silica Nanoparticles for Quasi-Solid Dye-Sensitized Solar Cells”,
Journal of Fluorine Chemistry, vol. 125, 2004, pp. 1241-1245.
[40] A. Hauch, and A. Georg, ”Diffusion in the electrolyte and charge-transfer reaction
at the platinum electrode in dye-sensitized solar cells”, Electrochimica Acta, vol. 46,
2001, pp. 3457-3466.
[41] A. Kay and M. Gr¨atzel, ”Low cost photovoltaic modules based on dye sensitized
nanocrystalline titanium dioxide and carbon powder”, Solar Energy Materials and Solar
Cells, vol. 44, 1996, pp. 99-117.
[42] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. I. Nakamura, and K. Murata,
”High-performance carbon counter electrode for dye-sensitized solar cells”, Solar Energy
Materials and Solar Cells, vol. 79, 2003, pp. 459-469.
[43] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, Takeru. Bessho, I. Cesar,
P. Liska, R. H. Baber, P. Comte, P. P´echy, and M. Gr¨atzel, ”Highly Efficient Dye-
Sensitized Solar Cells Based on Carbon Black Counter Electrodes”, Journal of The
Electrochemical Society, vol. 153, 2006, pp. A2255-A2261.
[44] P. J. Sebasti´an, A. Olea, J. Campos, J. A. Toledo, and S. A. Gamboa , ”Temperature
Dependence and the Oscillatory Behavior of the Opto-Electronic Properties of a Dye-
Sensitized Nanocrystalline TiO2 Solar Cell”, Solar Energy Materials & Solar Cells,
vol. 81, 2004, pp. 349-361.
[45] M. Toivola, L. Peltokorpi, J. Halme, and P. Lund, ”Regenerative Effects by Temperature
Variations in Dye-Sensitized Solar Cells”, Solar Energy Materials & Solar Cells, vol.
91, 2007, pp. 1733-1724.
[46] M. Berginc, U. O. Kra˘sovec, M. Ho˘cevar, and M. Topi˘c, ”Performance of dyesensitized
solar cells based on Ionic liquids: Effect of temperature and iodine concentration”,
Thin Solid Films, available online, 2007.
[47] R. P. Benedict, ”Fundamentals of Temperature, Pressure, and Flow Measurements”,
John Wiley & Sons, Inc., 1969.
[48]耿繼業、何建娃,幾何光學,台北市:全華科技圖書股份有限公司,2001, 第1-20頁。
[49] http://commons.wikimedia.org/wiki/Image:Photoelectric effect.png
[50]宋心琦、周福添、劉劍波,光化學,台北市:五南圖書出版股份有限公司,2004, 第285-293頁。
[51]陳振興,高分子電池材料,中國北京市:化學工業出版社,2005, 第35-267頁。
[52]莊達人,VLSI製造技術,台北縣:高立圖書有限公司,2005, 第46-68頁。
[53] D. A. Neamen, ”Semiconductor Physics and Devices”, Richard D. IRWIN, Inc., 1992.
[54] A. Hagfeld and M. Gr¨atzel, ”Light-induced redox reactions in nanocrystalline systems
”, Chemical Reviews, vol. 95, 1995, pp. 49-68.
[55] G. Hodes, ”Electrochemistry of Nanomaterials”, Wiley-Vch, 2001, pp. 169-197.
[56] K. Kalyanasundaram and M. Gr¨atzel, ”Applications of functionalized transition metal
complexes in photonic and optoelectronic devices”, Coordination Chemistry Reviews,
vol. 77, 1998, pp. 347-414.
[57] X. T. Zhang, H. W. Liu, T. Taguchi, Q. B. Meng, Q. Sato, and A. Fujishima, ”Slow
interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-
coated nanoporous TiO2 films”, Solar Energy Materials & Solar Cells, vol. 81, 2004,
pp. 197-203.
[58]蔡昇佑,染料敏化奈米太陽能電池研製與效率量測,碩士論文,國立台北科技大學製造科技研究所,台北,2007。
[59] G. Boyle, ”Rencewable Energy”, Oxford University Press, 2004, pp. 89-136.
[60]林振華,奈米科技全書(一)-觀察篇,台北市:全華科技圖書股份有限公司,2005,第1-1-2-19頁。
[61]馬振基,奈米材料科技原理與應用,台北市:全華科技圖書股份有限公司,2003,第2-1-2-56頁。
[62]范光照,奈米工程概論,台北縣:普林斯頓國際,2003, 第7-33頁。
[63]高濂、孫靜、劉陽橋,奈米粉體的分散及表面改性,台北市:五南圖書出版股份有限公司,2005,第9-264頁。
[64]賴耿陽,超音波工學理論實務,台南市:復漢出版社,1992, 第407-440頁。
[65]German著,伍祖璁、黃錦鐘譯,粉末冶金,台北市:高立圖書有限公司,2000, 第171-226頁。
[66]朱旭山,「熱電材料與元件之發展與應用」, 工業材料雜誌,第二百二十期,2005,第93-103頁。
[67]張阜權、孫榮山、唐偉國,光學,新竹市:凡異出版社,1995, 第377-387頁。
[68]楊建人,光學原理,台北縣:財團法人徐氏文教基金會,2000, 第145-165頁。
[69] H. J. Snaith, L. S. Mende, and M. Gr¨atzel, ”Light intensity, temperature, and thickness
dependence of the open-circuit voltage in solid-state dye-sensitized solar cells”,The
American Physical Society, vol. B 74, no. 045306, 2006, pp. 1-6.
[70]王建義,奈米技術手冊(精華版),台北市:全華科技圖書股份有限公司,2005,第190-191頁。
[71]任俊,顆粒分散科學與技術,中國北京市:化學工業出版社,2005,第167-214頁。
[72] L. N. Lewis, J. L. Spivack, S. Gasaway, E. D. Williams, J. Y. Gui, V. Manivannan,
and O. P. Siclovan, ”A novel UV-mediated low-temperature sintering of TiO2 for dyesensitized
solar cells”,Solar Energy Materials and Solar Cells, vol. 90, 2006, pp. 1041-
1051.
論文全文使用權限:同意授權於2011-08-19起公開