現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:雙管熱管散熱器研製與其應用開發 [以論文名稱查詢館藏系統]
論文英文名稱:Developing the Dual-Pipe Heat Pipe Cooler and its Applications [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:製造科技研究所
畢業學年度:100
出版年度:101
中文姓名:陳育煒
英文姓名:Yu-Wei Chen
研究生學號:99568062
學位類別:碩士
語文別:中文
口試日期:2012-07-23
論文頁數:100
指導教授中文名:丁振卿
指導教授英文名:Chen-Ching Ting
口試委員中文名:洪祖全;楊台發
口試委員英文名:Tzu-Chen Hung;Tai-Fa Young
中文關鍵詞:雙管熱管、Schlieren熱流顯像溝槽式熱管最大散熱功率熱響應
英文關鍵詞:Dual-pipe heat pipeSchlieren thermal visualizationGrooved heat pipeMaximum heat transfer rateThermal response
論文中文摘要:本論文主要再進行雙管散熱器研製與其應用發,其中,雙管熱管為一只具備內外管構造的熱管,由本CCT實驗室所發明與開發,目的在恢復原始熱管的熱傳導行為並增加散熱器之散熱功率。研究方法以探討傳統熱管之原始熱傳導行為在接上散熱鰭片後,其熱傳導行為之變化,並開發雙管熱管達到恢復原始熱傳導行為,進而增加散熱器之散熱功率。本研究進行雙管熱管散熱裝置之散熱功率測定,並與傳統熱管散熱器進行比較。另外,本研究以紅外線熱像儀及彩色Schlieren等光學技術對熱管及其散熱鰭片間的熱傳行為進行量測。在彩Schlieren量測方面,成功以水為介質觀測出雙管與單管熱管熱傳導行為差異。實驗過程,自製雙管熱管以一外徑ø6mm、長200mm之溝槽式熱管,在熱管絕熱段植入一外徑ø 5.4mm、壁厚0.3mm、長60mm且熱傳導係數值極小的不鏽鋼網,量測雙管熱管散熱器之熱響應與散熱功率,並與傳統熱管散熱器進行較。結果顯示,雙管熱管散熱器之熱響應與傳統熱管散熱器接近,但雙管熱管達均溫時比傳統熱管高約3℃;另外,在最大散熱功率下,雙管熱管之散熱功率比傳統散熱器增加最大81%。
論文英文摘要:This article is focused on developing the dual-pipe heat pipe cooler and its applications, where the dual-pipe heat pipe is made of the inner and outer pipes, which is invented and developed by our CCt Laboratory. the dual-pipe heat pipe is developed to recover the original heat transfer property of the heat pipe and to increase the cooling power. Research process is to steady the change of the original transfer property of the heat pipe in connection with the heat sink. This work aims to develop the dual-pipe heat pipe for recovering the original heat transfer property of the heat pipe and increasing the cooling power of the dual-pipe heat pipe cooler in comparison with the conventional heat pipe cooler. Moreover, the research uses the infrared thermal camera and color Schlieren to measure the heat transfer property
of heat pipe and heat sink. The color Schlieren measurements have successfully observe the characteristics of the heat transfer for the heat pipe and the dual-pipe heat pipe in the water. Experiments use a grooved heat pipe with outer diameter of 6mm and length 200mm. A steel mesh pipe the low thermal conductivity with outer diameter 5.4mm, thickness 0.3mm, length 60mm is build in inner pipe, and implanted in adiabatic section of heat pipe. In process, the thermal response and the cooling power of the dual-pipe heat pipe cooler are measured in comparison with the conventional heat pipe cooler. The results show that the thermal response of the dual-pipe heat pipe cooler is similar to the conventional heat pipe cooler. Moreover, the temperature of the dual-pipe heat pipe cooler is 3℃ larger than the conventional heat pipe cooler at the steady state. Moreover there is 81% increment rate of cooling power for the dual-pipe heat pipe in comparison with the conventional heat pipe while the maximum heat transfer rate is applied.
論文目次:摘要 i
ABSTRACT iii
誌謝 iv
目錄 vi
表目錄 vii
圖目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.3 研究動機與目的 6
第二章 基礎理論 7
2.1 熱管之工作原理 7
2.2 雙管熱管原理 9
2.3 熱管的熱傳限制 9
2.3.1 毛細管構造界限 11
2.3.2 飛散界限 11
2.3.3 沸騰界限 11
2.3.4 音速界限 11
2.3.5 溢流界限 12
2.3.6 顯熱與潛熱 12
2.4 理論工作流體填充量 13
2.5 熱阻與最大熱傳量 15
2.6 Schlieren光學顯像技術 15
2.7 Labview軟體之訊號與判讀 20
第三章 實驗架設 21
3.1 熱管製作 21
3.1.1 熱管清洗標準過程 21
3.1.2 單管熱管製作 23
3.1.3 方管雙管熱管製作 23
3.1.4 雙管熱管製作 26
3.2 熱響應量測 28
3.3 熱傳行為觀測 30
3.4 熱管受中間冷卻水影響量測 32
3.5 工作流體規格 33
3.6 熱管之熱傳導行為影像裝置架設 35
3.6.1 Schlieren熱流影像 35
3.6.2 紅外線量測儀 37
3.7 散熱功率量測儀之自動化量測 38
3.8 真空封裝系統 43
3.9 雙管熱管散熱器應用 45
第四章 結果與討論 47
4.1 方管雙管熱管熱傳導行為分析 47
4.1.1 方管受中間冷卻水影響分析 50
4.1.2 方管雙管熱管表面溫度分析 50
4.2 雙管之熱傳導行為分析 53
4.3 雙管熱響應分析 57
4.4 熱管受中間冷卻水影響量測分析 68
4.5 雙管熱管散熱器之熱管表面溫度分析 72
4.5.1 商用熱管 72
4.5.2 自製單管熱管 73
4.5.3 自製雙管熱管 73
4.6 雙管熱管之內管網目數分析 87
4.7 雙管熱管填水量分析 88
4.8 雙管散熱器之散熱功率分析 88
4.9 雙管熱管散熱器應用 90
第五章 結論 92
第六章 未來展望 94
參考文獻 100
論文參考文獻:[1] 陳嘉瑞、陳宗耀、陳孟壕、王邦吉、蔡志然,高效能板式熱管之研發,國研科技,第十五期,國家太空中心,2007,第40-47頁。
[2] A. N. Haq and T. Tamizharasan, ”Investigation of the effects of cooling in hard turning operations,” Journal of the Advanced Manufacturing Technology, vol. 30, 2006, pp. 808-816.
[3] 汪永川,燒結毛細結構在熱管內之熱流特性,碩士論文,國立清華大學,新竹,2005。
[4] R. R. Riehl and N. D. Santos, ”Loop heat pipe performance enhancement using primary wick with circumferential grooves,” Applied Thermal Engineering, vol. 28, 2008, pp. 1745-1755.
[5] 高政群,微型迴路式熱管之研製,碩士論文,國立清華大學,新竹,2002。
[6] R. S. Gaugler, Heat transfer device, U. S. Patent, No. 2350348, 1942.
[7] G. M. Grove, ”Vaporation-condensation Heat Transfer Device,” U. S. Patent, No.
3229759, 1963.
[8] J. Wei, K. Hijikata and Takayoshi Inoue, ”Fin efficiency enchancement using a gravityassisted planar heat pipe,” International Journal of Heat Mass Transfer, vol. 40,
1997, pp. 1045-1051.
[9] Y. H. Lin, S.W. Kang and H. L. Chen, ”Effect of silver nano-fluid on pulsating heat pipe thermal performauce,” Applied Thermal Engineering, vol. 28, 2008, pp. 1312-1317.
[10] Z. H. Liu, Y. Y. Li and R. Bao, ”Thermal performance of inclined grooved heat pipes using nanofluids,” International Journal of Thermal Science, vol. 49, 2010, pp. 1680-1687.
[11] Z. H. Liu and Q. Zhu, ”Application of aqueous nanofluids in a horizontal mesh heat pipe,” Energy Conversion and Management, vol. 52, 2011, pp. 292-300.
[12] 黃振東,熱界面材料之特性與應用,工業材料雜誌,第兩百二十期,2005,第83-92頁。
[13] S. C. Lin, F. S. Chuang and C. A. Chou, ”Experimental study of the heat sink assembly with oblique straight fins,” Experimental Thermal and Fluid Science, vol. 29, 2005, pp. 591-600.
[14] D. P. Kulkarni and D. k. Das, ”Analytical and numerical studies on microscale heat sinks for electronic applications,” Applied Thermal Engineering, vol. 25, 2005, pp. 2432-2449.
[15] C. C. Ting and C. C. Chen, ”Developing the coaxial dual-pipe heat pipe for applications on heat pipe cooler,” Journal of heat transfer of the ASME, vol. 133, 2011, pp. 092901-1-7.
[16] C. C. Ting, J. N. Lee and C. C. Chen, ”Heat transfer characterizations of heat pipe in comparison with copper pipe,” Journal of Heat Transfer of the ASME, vol. 131, 2009, pp. 033109-1-6.
[17] G. M. Gover, ”Evaporation-condensation heat transfer device,” U. S. Patent, NO.
3229759, 1963.
[18] T. P. Cotter, ”Principles and prospects for micro heat pipes,” Proceedings 5th International Heat Pipe Conference, Tsukuba, Ibaraki, 1984, pp.328-334.
[19] 依日光,熱管技術理論實務,日本技術協會編,台北:復漢出版社,1986。
[20] A. Bejan and E. Sciubba, ”The optimal spacing of parallel plates cooled by forced convection,” International Journal of Heat and Mass Transfer, vol. 35, 1992, pp. 3259-3264.
[21] R. H. Yeh and M. Chang, ”Optimum logitudinal convective fin arrays,” International Communications in Heat and Mass Transfer, vol. 22, 1995 , pp. 445-460.
[22] M. Oomi, T. Fukumoto and J. Sotani, ”A heat-pipe system for a destktop computer,” Asvances in Electronic Packaging, vol. 2, 1999, pp. 1951-1955.
[23] K. Azar, ”The history of power dissipation,” Electronics Cooling, 2000.
[24] S. Lee, ”Calculating spreading resistance in heat sinks,” Electronics Cooling, 1998.
[25] T. Nguyen, M. Mochizuki, K. Mashiko, Y. Saito, I. sauciue and R. Boggs, ”Advanced cooling system using miniature jeat pipes in mobile PC,” IEEE Transaction on Components and Packing Technology, vol. 23, no. 1, 2000.
[26] S. Nishio, ”Attempts to apply micro heat transfer to thermal anagement,” Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale, Banff, Canada, 2000, pp.32-40.
[27] C. A. Soule, ”Future trends in heat sink design,” Electronics Cooling, 2001.
[28] 徐富德,CPU Cooler熱組測試模擬系統之設計與研發,碩士論文,國立清華大學,新竹,2001。
[29] 潘志鴻,筆記型電腦散熱鰭片之改善,碩士論文,國立台灣科技大學,台北,2002。
[30] 王暉雄,熱管散熱模組效能探討,碩士論文,國立成功大學,台南,2001。
[31] 鄭建增,蒸氣式與熱管式散熱模組之熱阻分析,碩士論文,台北科技大學機電整合研究所,台北,2002。
[32] 王文耕,電腦CPU散熱片造型對其熱傳效果之影響,碩士論文,國立成功大學,台南,2003。
[33] D. D. L. Chung, ”Thermal interface materials,” Journal of Materials Engineering and Performance, vol. l0, 2001, pp. 56-59.
[34] G. T. Hall and J. E. Marthinuss, ”Air cooled compact heat exchanger design for electronic cooling,” Electronics Cooling, 2004.
[35] 黃俊勝,微流道流體顯像技術研發,碩士論文,義守大學,高雄,2005。
[36] 吳俊鞍,迷你電腦系統的熱流場分析與實驗,碩士論文,國立台灣科技大學,台北,2005。
[37] D. B. Tuckerman and R. F.W. Pease, ”High performance heat sinking for VLSI,” IEEE Electron Dvice Lett, vol. 2, no. 5, 1981, pp. 126-129.
[38] P.Wu andW. A. little, ”Measurement of friction factors for the flow of gases in very fine channel heat exchangers used for microminiature joule-thomson refrigerators,” Journal of Cryogenics, vol. 23, no. 5, 1983, pp. 273-277.
[39] K. C. Toh, X. Y. Chen and J. C. Chai, ”Numerical computation of fluid flow and heat transfer in microchannels,” Journal of Heat and Mass Transfer, vol. 45, 2002, pp. 5133-5141.
[40] S. B. Choi, R. F Barron and R. O. Warrington, ”Fluid flow and heat transfer in microtubes,” American Society of Mechanical Engineers, vol. 32, 1991, pp. 123-134.
[41] X. F. Peng, G.P. Peterson and B. X. Wang, ”Heat transfer characteristics of water flowing through mcrochannels,” Expertmental Heat Transfer, vol. 7, 1994, pp. 265-283.
[42] X. F. Peng and G. P. Peterson, ”The effect of thermofluid and geometrical parameters on convection of liquid through rectangular microchannels,” International Journal of Heat Mass Transfer, vol. 38, 1995, pp. 755-758.
[43] X. F. Peng and G. P. Peterson, ”Convective heat transfer and flow friction for water flow in microchannel structures,” Journal of Heat and Mass Transfer, vol. 39, 1996, pp. 2599-2608.
[44] W. Qu and I. Mudawar, ”Experimental and numerical study of pressure drop and heat transfer in a single-phase microchannel Heat Sink,” Journal of Heat and Mass Transfer, vol. 45, 2002, pp. 2549-2565.
[45] C. B. Sobhan and S. Garimella, ”A comparative analysis of studies on heat transfer and fluid in microchannels,” Microscale Thermophysical Engineering, vol. 5, 2001, pp. 293-311.
[46] R. Srivastava, G. Shenoy, S. Forrest, R. S. Besser and M. J. Mcshane, ”Microspetrometer for infrared analysys of gase and biological fluids,” IEEE Electronic Components and Technology Conference, 2000, pp.1660-1662.
[47] A. Kumar and R. G. Reddy, ”Modeling of polymer electronic membrane fuel cell with metal foam in the flow-field of the bipolar and plates,” Journal of Power Sources, vol.114, 2003, pp. 54-62.
[48] 周逸圭,滑動效應對圓管微流道流場之影響,碩士論文,國立台灣科技大學,台北,2004。
[49] Z. Y. Guo and Z. X. Li, ”Size effect on single-phase channel flow and heat transfer at microscal,” Journal of Heat and Fluid Flow, vol. 24, 2003, pp. 284-298.
[50] 游本權,渠道壁面流體滑移現象對微流道熱沈熱傳的影響,碩士論文,國立交通大學,新竹,2006。
[51] 陳慶祥,微流道內流場之阻力與熱傳特性分析,碩士論文,淡江大學,新北市,1999。
[52] 黃玉年,矽值微熱管之研製與測試,碩士論文,淡江大學,新北市,1999。
[53] 卓世傑,銅粉燒結型微熱管研究,碩士論文,國立臺北科技大學機電整合研究所,台北,2000。
[54] 張文輝,熱管最大熱傳量測試機台之研製,碩士論文,國立台北科技大學製造科技研究所,台北,2007。
[55] W. Merzkirch, Flow Visualization, Orlando: Academic Press, 1987, pp.115-218.
[56] G. S. Settles, ”Color schlieren Optical-a Review of Techniques and Application, International Symposium on Flow Visualization, New York:Hemisphere Pub, 1982, pp.187-197.
[57] C. C. Ting, S. J. Wu, J. S. Huang, H. D. Lin and Y. B. Luo, ”The improvement of color schlieren technique by using an LCD projector,” Presented at 2004 AASRC/CCAS Joint Conference, Taichung, 2004.
[58] C. C. Ting, S. J.Wu, J. S. Huang, H. D. Lin and Y. B. Luo, ”Investigation of the effect of color mask on the sensitivity of color schlieren Imaging,” Presented at AASRC/CCAS Joint Conference, Taichung, 2004.
[59] 蔡敬堯,多段滲透率高熱傳量熱管之設計與製造,碩士論文,國立臺北科技大學製造科技研究所,台北,2008。
[60] 陳宏明,熱管與散熱鰭片之精細機構微熱流研究,碩士論文,國立臺北科技大學製造科技研究所,2007。
[61] 蔡聲鴻,均熱片之製造與分析,碩士論文,淡江大學,新北市,2005。
[62] T. Yong, C. Ping and W. Xiaowu, ”Experimental investigation into the performance of heat pipe with microgrooves fabricated by extrusion-ploughing process,” Journal of Energy Conversion and Management, vol. 51, 2010, pp. 1849-1854.
論文全文使用權限:同意授權於2017-08-01起公開